Название | Логика чудес. Осмысление событий редких, очень редких и редких до невозможности |
---|---|
Автор произведения | Ласло Мерё |
Жанр | Прочая образовательная литература |
Серия | |
Издательство | Прочая образовательная литература |
Год выпуска | 2018 |
isbn | 978-5-389-17644-7 |
Мы обычно считаем, что «средний» означает «типичный», а упоминания или изучения заслуживают отклонения от среднего. Однако очень часто это не так. По любому конкретному параметру – объему, весу, числу и глубине складок или любой другой характеристике – наш мозг так же отличается от среднего, как наш рост. Средний рост венгра – метр семьдесят пять, но мужчин именно этого роста мало. Почти все они слегка выше или ниже.
В связи с такими отклонениями от среднего статистики определяют не только среднее значение величины, которую исследуют, но и среднее отклонение от нее. На профессиональном языке статистиков этот параметр называется «стандартным отклонением». Например, рост типичного мужчины «ниже среднего» – на одно стандартное отклонение меньший среднего роста – равен 1 м 67 см, а рост типичного мужчины «выше среднего» – метр восемьдесят три. В этом смысле можно сказать, что мужчина ростом 167 см – такой же «средний», как и мужчина ростом 183 см; рост обоих отличается от среднего на одно стандартное отклонение. Строго говоря, то, что я тут описываю, не вполне точно соответствует стандартному отклонению; математики предпочитают использовать чуть более сложную формулу[20].
Из психологических исследований нам известно, что мы воспринимаем мир сквозь призму языка. Мы не считаем человека ростом 183 см поразительно высоким, как и человека ростом 167 см – удивительно низким. То, что большинство из нас считает примечательным, начинается где-то в паре стандартных отклонений от среднего. Так, рост 191 см мы считаем высоким, а уж когда со стула встанет человек, рост которого отличается от среднего на три стандартных отклонения – то есть равен 199 см, – он, несомненно, привлечет наше внимание. Но это все еще не чудо. А вот человек пятиметрового роста считался бы явлением чудесным. Его рост отличался бы от среднего более чем на сорок стандартных отклонений. Но на самом деле людей пятиметрового – и даже трехметрового – роста не существует.
Если кто-то говорит о среднем, не называя стандартного отклонения, к его словам всегда следует относиться с некоторым подозрением[21]. Такой человек вовсе не обязательно пытается нас обмануть; вполне возможно, что он говорит по незнанию. Но следует помнить, что средняя величина без стандартного отклонения дает мало информации. Взять, например, тот факт, что типичный ребенок начинает говорить в полтора года. Следует ли нам беспокоиться об умственном развитии нашей маленькой Моники, если ей уже исполнилось два года, а она все еще не научилась говорить? Если бы стандартное отклонение для возраста освоения речи равнялось паре месяцев, тогда у нас был бы повод для беспокойства. На самом деле оно составляет около полугода, так что запаздывание речевого развития Моники – вполне нормальное. Когда мама привела меня по этому
20
Более точную формулу стандартного отклонения и основополагающие концепции математической статистики см., например, в Schervish (1998) и Shao (2008).
21
У любого распределения есть и другие характеристики помимо математического ожидания и стандартного отклонения. Например, стандартное отклонение ничего не говорит о наличии двойного «пика» у бимодального распределения. Но эти параметры не столь часто бывают по-настоящему важны, в то время как стандартное отклонение всегда имеет фундаментальное значение.