Die Grundlagen der Arithmetik. Frege Gottlob

Читать онлайн.
Название Die Grundlagen der Arithmetik
Автор произведения Frege Gottlob
Жанр Зарубежная классика
Серия
Издательство Зарубежная классика
Год выпуска 0
isbn



Скачать книгу

hier nicht ist, ob natürlich, sondern ob den Kern der Sache treffend und logisch einwurfsfrei.

      Ich gebe mich der Hoffnung hin, dass bei vorurtheilsloser Prüfung auch die Philosophen einiges Brauchbare in dieser Schrift finden werden.

      § 1. Nachdem die Mathematik sich eine Zeit lang von der euklidischen Strenge entfernt hatte, kehrt sie jetzt zu ihr zurück und strebt gar über sie hinaus. In der Arithmetik war schon infolge des indischen Ursprungs vieler ihrer Verfahrungsweisen und Begriffe eine laxere Denkweise hergebracht als in der von den Griechen vornehmlich ausgebildeten Geometrie. Sie wurde durch die Erfindung der höhern Analysis nur gefördert; denn einerseits stellten sich einer strengen Behandlung dieser Lehren erhebliche, fast unbesiegliche Schwierigkeiten entgegen, deren Ueberwindung andrerseits die darauf verwendeten Anstrengungen wenig lohnen zu wollen schien. Doch hat die weitere Entwickelung immer deutlicher gelehrt, dass in der Mathematik eine blos moralische Ueberzeugung, gestützt auf viele erfolgreiche Anwendungen, nicht genügt. Für Vieles wird jetzt ein Beweis gefordert, was früher für selbstverständlich galt. Die Grenzen der Giltigkeit sind erst dadurch in manchen Fällen festgestellt worden. Die Begriffe der Function, der Stetigkeit, der Grenze, des Unendlichen haben sich einer schärferen Bestimmung bedürftig gezeigt. Das Negative und die Irrationalzahl, welche längst in die Wissenschaft aufgenommen waren, haben sich einer genaueren Prüfung ihrer Berechtigung unterwerfen müssen.

      So zeigt sich überall das Bestreben, streng zu beweisen, die Giltigkeitsgrenzen genau zu ziehen und, um dies zu können, die Begriffe scharf zu fassen.

      § 2. Dieser Weg muss im weitern Verfolge auf den Begriff der Anzahl und auf die von positiven ganzen Zahlen geltenden einfachsten Sätze führen, welche die Grundlage der ganzen Arithmetik bilden. Freilich sind Zahlformeln wie 5 + 7 = 12 und Gesetze wie das der Associativität bei der Addition durch die unzähligen Anwendungen, die tagtäglich von ihnen gemacht werden, so vielfach bestätigt, dass es fast lächerlich erscheinen kann, sie durch das Verlangen nach einem Beweise in Zweifel ziehen zu wollen. Aber es liegt im Wesen der Mathematik begründet, dass sie überall, wo ein Beweis möglich ist, ihn der Bewährung durch Induction vorzieht. Euklid beweist Vieles, was ihm jeder ohnehin zugestehen würde. Indem man sich selbst an der euklidischen Strenge nicht genügen liess, ist man auf die Untersuchungen geführt worden, welche sich an das Parallelenaxiom geknüpft haben.

      So ist jene auf grösste Strenge gerichtete Bewegung schon vielfach über das zunächst gefühlte Bedürfniss hinausgegangen und dieses ist an Ausdehnung und Stärke immer gewachsen.

      Der Beweis hat eben nicht nur den Zweck, die Wahrheit eines Satzes über jeden Zweifel zu erheben, sondern auch den, eine Einsicht in die Abhängigkeit der Wahrheiten von einander zu gewähren. Nachdem man sich von der Unerschütterlichkeit eines Felsblockes durch vergebliche Versuche, ihn zu bewegen, überzeugt hat, kann man ferner fragen, was ihn denn so sicher unterstütze. Je weiter man diese Untersuchungen fortsetzt, auf desto weniger Urwahrheiten führt man Alles zurück; und diese Vereinfachung ist an sich schon ein erstrebenswerthes Ziel. Vielleicht bestätigt sich auch die Hoffnung, dass man allgemeine Weisen der Begriffsbildung oder der Begründung gewinnen könne, die auch in verwickelteren Fällen verwendbar sind, indem man zum Bewusstsein bringt, was die Menschen in den einfachsten Fällen instinctiv gethan haben, und das Allgemeingiltige daraus abscheidet.

      § 3. Mich haben auch philosophische Beweggründe zu solchen Untersuchungen bestimmt. Die Fragen nach der apriorischen oder aposteriorischen, der synthetischen oder analytischen Natur der arithmetischen Wahrheiten harren hier ihrer Beantwortung. Denn, wenn auch diese Begriffe selbst der Philosophie angehören, so glaube ich doch, dass die Entscheidung nicht ohne Beihilfe der Mathematik erfolgen kann. Freilich hangt dies von dem Sinne ab, den man jenen Fragen beilegt.

      Es ist kein seltener Fall, dass man zuerst den Inhalt eines Satzes gewinnt und dann auf einem andern beschwerlicheren Wege den strengen Beweis führt, durch den man oft auch die Bedingungen der Giltigkeit genauer kennen lernt. So hat man allgemein die Frage, wie wir zu dem Inhalte eines Urtheils kommen, von der zu trennen, woher wir die Berechtigung für unsere Behauptung nehmen.

      Jene Unterscheidungen von apriori und aposteriori, synthetisch und analytisch betreffen nun nach meiner5 Auffassung nicht den Inhalt des Urtheils, sondern die Berechtigung zur Urtheilsfällung. Da, wo diese fehlt, fällt auch die Möglichkeit jener Eintheilung weg. Ein Irrthum apriori ist dann ein ebensolches Unding wie etwa ein blauer Begriff. Wenn man einen Satz in meinem Sinne aposteriori oder analytisch nennt, so urtheilt man nicht über die psychologischen, physiologischen und physikalischen Verhältnisse, die es möglich gemacht haben, den Inhalt des Satzes im Bewusstsein zu bilden, auch nicht darüber, wie ein Anderer vielleicht irrthümlicherweise dazu gekommen ist, ihn für wahr zu halten, sondern darüber, worauf im tiefsten Grunde die Berechtigung des Fürwahrhaltens beruht.

      Dadurch wird die Frage dem Gebiete der Psychologie entrückt und dem der Mathematik zugewiesen, wenn es sich um eine mathematische Wahrheit handelt. Es kommt nun darauf an, den Beweis zu finden und ihn bis auf die Urwahrheiten zurückzuverfolgen. Stösst man auf diesem Wege nur auf die allgemeinen logischen Gesetze und auf Definitionen, so hat man eine analytische Wahrheit, wobei vorausgesetzt wird, dass auch die Sätze mit in Betracht gezogen werden, auf denen etwa die Zulässigkeit einer Definition beruht. Wenn es aber nicht möglich ist, den Beweis zu führen, ohne Wahrheiten zu benutzen, welche nicht allgemein logischer Natur sind, sondern sich auf ein besonderes Wissensgebiet beziehen, so ist der Satz ein synthetischer. Damit eine Wahrheit aposteriori sei, wird verlangt, dass ihr Beweis nicht ohne Berufung auf Thatsachen auskomme; d. h. auf unbeweisbare Wahrheiten ohne Allgemeinheit, die Aussagen von bestimmten Gegenständen enthalten. Ist es dagegen möglich, den Beweis ganz aus allgemeinen Gesetzen zu führen, die selber eines Beweises weder fähig noch bedürftig sind, so ist die Wahrheit apriori.6

      § 4. Von diesen philosophischen Fragen ausgehend kommen wir zu derselben Forderung, welche unabhängig davon auf dem Gebiete der Mathematik selbst erwachsen ist: die Grundsätze der Arithmetik, wenn irgend möglich, mit grösster Strenge zu beweisen; denn nur wenn aufs sorgfältigste jede Lücke in der Schlusskette vermieden wird, kann man mit Sicherheit sagen, auf welche Urwahrheiten sich der Beweis stützt; und nur wenn man diese kennt, wird man jene Fragen beantworten können.

      Wenn man nun dieser Forderung nachzukommen versucht, so gelangt man sehr bald zu Sätzen, deren Beweis solange unmöglich ist, als es nicht gelingt, darin vorkommende Begriffe in einfachere aufzulösen oder auf Allgemeineres zurückzuführen. Hier ist es nun vor allen die Anzahl, welche definirt oder als undefinirbar anerkannt werden muss. Das soll die Aufgabe dieses Buches sein.7 Von ihrer Lösung wird die Entscheidung über die Natur der arithmetischen Gesetze abhangen.

      Bevor ich diese Fragen selbst angreife, will ich Einiges vorausschicken, was Fingerzeige für ihre Beantwortung geben kann. Wenn sich nämlich von andern Gesichtspunkten aus Gründe dafür ergeben, dass die Grundsätze der Arithmetik analytisch sind, so sprechen diese auch für deren Beweisbarkeit und für die Definirbarkeit des Begriffes der Anzahl. Die entgegengesetzte Wirkung werden die Gründe für die Aposteriorität dieser Wahrheiten haben. Deshalb mögen diese Streitpunkte zunächst einer vorläufigen Beleuchtung unterworfen werden.

      I. Meinungen einiger Schriftsteller über die Natur der arithmetischen Sätze

      Sind die Zahlformeln beweisbar?

      § 5. Man muss die Zahlformeln, die wie 2 + 3 = 5 von bestimmten Zahlen handeln, von den allgemeinen Gesetzen unterscheiden, die von allen ganzen Zahlen gelten.

      Jene werden von einigen Philosophen8 für unbeweisbar und unmittelbar klar wie Axiome gehalten. Kant9 erklärt sie für unbeweisbar und synthetisch, scheut sich aber, sie Axiome zu nennen, weil sie nicht allgemein sind, und weil ihre Zahl unendlich ist. Hankel10 nennt mit Recht diese Annahme von unendlich vielen unbeweisbaren Urwahrheiten unangemessen und paradox. Sie widerstreitet in der That dem Bedürfnisse der Vernunft nach Uebersichtlichkeit der ersten Grundlagen. Und ist es denn unmittelbar



<p>5</p>

Ich will damit natürlich nicht einen neuen Sinn hineinlegen, sondern nur das treffen, was frühere Schriftsteller, insbesondere Kant gemeint haben.

<p>6</p>

Wenn man überhaupt allgemeine Wahrheiten anerkennt, so muss man auch zugeben, dass es solche Urgesetze giebt, weil aus lauter einzelnen Thatsachen nichts folgt, es sei denn auf Grund eines Gesetzes. Selbst die Induction beruht auf dem allgemeinen Satze, dass dies Verfahren die Wahrheit oder doch eine Wahrscheinlichkeit für ein Gesetz begründen könne. Für den, der dies leugnet, ist die Induction nichts weiter als eine psychologische Erscheinung, eine Weise, wie Menschen zu dem Glauben an die Wahrheit eines Satzes kommen, ohne dass dieser Glaube dadurch irgendwie gerechtfertigt wäre.

<p>7</p>

Es wird also im Folgenden, wenn nichts weiter bemerkt wird, von keinen andern Zahlen als den positiven ganzen die Rede sein, welche auf die Frage wie viele? antworten.

<p>8</p>

Hobbes, Locke, Newton. Vergl. Baumann, die Lehren von Zeit, Raum und Mathematik. S. 241 u. 242, S. 365 ff., S. 475.

<p>9</p>

Kritik der reinen Vernunft, herausgeg. v. Hartenstein. III. S. 157.

<p>10</p>

Vorlesungen über die complexen Zahlen und ihre Functionen. S. 55.