Artificial Intelligence and Quantum Computing for Advanced Wireless Networks. Savo G. Glisic

Читать онлайн.
Название Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
Автор произведения Savo G. Glisic
Жанр Программы
Серия
Издательство Программы
Год выпуска 0
isbn 9781119790310



Скачать книгу

i Endscripts normal w Subscript italic i j Superscript l Baseline normal a Subscript i Superscript l minus 1 Baseline left-parenthesis k right-parenthesis plus w Subscript b Superscript l Baseline equals sigma-summation Underscript i Endscripts s Subscript italic i j Superscript l Baseline left-parenthesis k right-parenthesis plus w Subscript b Superscript l Baseline comma"/>

      (3.23)StartFraction partial-differential s Subscript j Superscript l Baseline left-parenthesis k right-parenthesis Over partial-differential normal w Subscript italic i j Superscript l Baseline EndFraction equals StartFraction partial-differential left-parenthesis normal w Subscript italic i j Superscript l Baseline dot normal a Subscript i Superscript l minus 1 Baseline left-parenthesis k right-parenthesis right-parenthesis Over partial-differential normal w Subscript italic i j Superscript l Baseline EndFraction equals normal a Subscript i Superscript l minus 1 Baseline left-parenthesis k right-parenthesis period

      This holds for all layers in the network. Defining partial-differential upper J slash partial-differential s Subscript j Superscript l Baseline left-parenthesis k right-parenthesis equals delta Subscript j Superscript l Baseline left-parenthesis k right-parenthesis allows us to rewrite Eq. (3.21) as

      (3.24)normal w Subscript italic i j Superscript l Baseline left-parenthesis k plus 1 right-parenthesis equals normal w Subscript italic i j Superscript l Baseline left-parenthesis k right-parenthesis minus mu delta Subscript j Superscript l Baseline left-parenthesis k right-parenthesis dot normal a Subscript i Superscript l minus 1 Baseline left-parenthesis k right-parenthesis period

      We now show that a simple recursive formula exists for finding delta Subscript j Superscript l Baseline left-parenthesis k right-parenthesis. Starting with the output layer, we observe that s Subscript j Superscript upper L Baseline left-parenthesis k right-parenthesis influences only the instantaneous output node error ej(k). Thus, we have

      For a hidden layer, s Subscript j Superscript l Baseline left-parenthesis k right-parenthesis has an impact on the error indirectly through all node values s Subscript j Superscript l plus 1 Baseline left-parenthesis k right-parenthesis in the subsequent layer. Due to the tap delay lines, s Subscript j Superscript l Baseline left-parenthesis k right-parenthesis also has an impact on the error across time. Therefore, the chain rule now becomes

      where by definition partial-differential upper J slash partial-differential s Subscript m Superscript l plus 1 Baseline left-parenthesis t right-parenthesis equals delta Subscript m Superscript l plus 1 Baseline left-parenthesis t right-parenthesis. Continuing with the remaining term

      (3.27)StartFraction partial-differential s Subscript m Superscript l plus 1 Baseline left-parenthesis t right-parenthesis Over partial-differential s Subscript j Superscript l Baseline left-parenthesis k right-parenthesis EndFraction equals StartFraction partial-differential s Subscript m Superscript l plus 1 Baseline left-parenthesis t right-parenthesis Over partial-differential a Subscript j Superscript l Baseline left-parenthesis k right-parenthesis EndFraction StartFraction partial-differential a Subscript j Superscript l Baseline left-parenthesis k right-parenthesis Over partial-differential s Subscript j Superscript l Baseline left-parenthesis k right-parenthesis EndFraction equals StartFraction partial-differential s Subscript m Superscript l plus 1 Baseline left-parenthesis t right-parenthesis Over partial-differential a Subscript j Superscript l Baseline left-parenthesis k right-parenthesis EndFraction f prime left-parenthesis s Subscript j Superscript l Baseline left-parenthesis k right-parenthesis right-parenthesis period

      Now

      (3.27a)StartFraction partial-differential s Subscript m Superscript l plus 1 Baseline left-parenthesis t right-parenthesis Over partial-differential a Subscript j Superscript l Baseline left-parenthesis k right-parenthesis EndFraction equals StartFraction partial-differential s Subscript italic j m Superscript l plus 1 Baseline left-parenthesis t right-parenthesis Over partial-differential a Subscript j Superscript l Baseline left-parenthesis k right-parenthesis EndFraction

      since the only influence a Subscript j Superscript l Baseline left-parenthesis k right-parenthesis has on s Subscript m Superscript l plus 1 Baseline left-parenthesis t right-parenthesis is via the synapse connecting unit j in layer l to unit m in layer l + 1. The definition of the synapse is explicitly given as

      (3.28)s Subscript italic j m Superscript l plus 1 Baseline left-parenthesis t right-parenthesis equals sigma-summation Underscript p equals 0 Overscript upper M Superscript l plus 1 Baseline Endscripts w Subscript italic j m Superscript l plus 1 Baseline left-parenthesis p right-parenthesis a Subscript j Superscript l Baseline left-parenthesis t minus p right-parenthesis period

      Thus

      (3.29)StartFraction partial-differential s Subscript italic j m Superscript l plus 1 Baseline left-parenthesis t right-parenthesis Over partial-differential a Subscript j Superscript l Baseline left-parenthesis k right-parenthesis EndFraction equals w Subscript italic j m Superscript l plus 1 Baseline left-parenthesis p right-parenthesis for t minus p equals k

      (3.30)equals StartLayout Enlarged left-brace 1st Row 1st Column w Subscript italic j m Superscript l plus 1 Baseline left-parenthesis t minus k right-parenthesis 2nd Column for 0 less-than-or-equal-to t minus k less-than-or-equal-to 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=