Artificial Intelligence and Quantum Computing for Advanced Wireless Networks. Savo G. Glisic

Читать онлайн.
Название Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
Автор произведения Savo G. Glisic
Жанр Программы
Серия
Издательство Программы
Год выпуска 0
isbn 9781119790310



Скачать книгу

upper T Baseline normal e right-parenthesis Over partial-differential w Subscript italic i j Superscript l Baseline EndFraction equals StartFraction partial-differential left-parenthesis normal e Superscript upper T Baseline normal e right-parenthesis Over partial-differential s Subscript j Superscript l Baseline EndFraction StartFraction partial-differential s Subscript j Superscript l Baseline Over partial-differential w Subscript italic i j Superscript l Baseline EndFraction equals delta Subscript j Superscript i Baseline a Subscript i Superscript l minus 1 Baseline comma"/>

      with delta Subscript j Superscript i Baseline equals partial-differential left-parenthesis normal e Superscript upper T Baseline normal e right-parenthesis slash partial-differential s Subscript j Superscript l leading to the weight update normal upper Delta w Subscript italic i j Superscript l Baseline equals minus mu delta Subscript j Superscript l Baseline a Subscript i Superscript l minus 1.

      Parameters δ are derived recursively starting from the output layer:

      where fleft-parenthesis s Subscript i Superscript upper L Baseline right-parenthesis is the derivative of the sigmoid function of s. We have also used for the output layer y Subscript j Baseline equals a Subscript j Superscript upper L. With this, at the output layer, each neuron has an explicit desired response, so we can write

      (3.10)StartFraction partial-differential left-parenthesis normal e Superscript upper T Baseline normal e right-parenthesis Over partial-differential y Subscript j Baseline EndFraction equals StartFraction partial-differential e Subscript j Superscript 2 Baseline Over partial-differential y Subscript j Baseline EndFraction equals 2 e Subscript j Baseline StartFraction partial-differential left-parenthesis d Subscript j Baseline minus y Subscript j Baseline right-parenthesis Over partial-differential y Subscript j Baseline EndFraction equals minus 2 e Subscript j Baseline period

      (3.11)delta Subscript i Superscript l Baseline equals StartFraction partial-differential left-parenthesis normal e Superscript upper T Baseline normal e right-parenthesis Over partial-differential s Subscript i Superscript l Baseline EndFraction equals sigma-summation Underscript j Endscripts left-parenthesis StartFraction partial-differential left-parenthesis normal e Superscript upper T Baseline normal e right-parenthesis Over partial-differential s Subscript j Superscript l plus 1 Baseline EndFraction right-parenthesis left-parenthesis StartFraction partial-differential s Subscript j Superscript l plus 1 Baseline Over partial-differential s Subscript i Superscript l Baseline EndFraction right-parenthesis

      with

      (3.12)StartFraction partial-differential s Subscript j Superscript l plus 1 Baseline Over partial-differential s Subscript i Superscript l Baseline EndFraction equals left-parenthesis StartFraction partial-differential s Subscript j Superscript l plus 1 Baseline Over partial-differential a Subscript i Superscript l Baseline EndFraction right-parenthesis left-parenthesis StartFraction partial-differential a Subscript i Superscript l Baseline Over partial-differential s Subscript i Superscript l Baseline EndFraction right-parenthesis equals w Subscript italic i j Superscript l Baseline 1 Baseline f prime left-parenthesis s Subscript i Superscript l Baseline right-parenthesis period

      Recalling that partial-differential left-parenthesis normal e Superscript upper T Baseline normal e right-parenthesis slash partial-differential s Subscript j Superscript l plus 1 Baseline equals delta Subscript j Superscript l plus 1, we get delta Subscript j Superscript i Baseline equals f prime left-parenthesis s Subscript i Superscript l Baseline right-parenthesis sigma-summation Underscript j Endscripts delta Subscript j Superscript i plus 1 Baseline w Subscript italic i j Superscript l plus 1 Baseline period In summary, we have

      (3.14)delta Subscript i Superscript l Baseline equals StartLayout Enlarged left-brace 1st Row 1st Column minus 2 e Subscript i Baseline f prime left-parenthesis s Subscript i Superscript upper L Baseline right-parenthesis 2nd Column l equals upper L 2nd Row 1st Column f prime left-parenthesis s Subscript i Superscript l Baseline right-parenthesis dot sigma-summation Underscript j Endscripts delta Subscript j Superscript i plus 1 Baseline period w Subscript italic i j Superscript l plus 1 Baseline 2nd Column 1 less-than-or-equal-to l less-than-or-equal-to upper L minus 1 comma EndLayout