Artificial Intelligence and Quantum Computing for Advanced Wireless Networks. Savo G. Glisic

Читать онлайн.
Название Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
Автор произведения Savo G. Glisic
Жанр Программы
Серия
Издательство Программы
Год выпуска 0
isbn 9781119790310



Скачать книгу

(3.48) is simplified to yield an autoregressive (AR(p)) filter

      (3.51)upper H left-parenthesis z right-parenthesis equals StartFraction upper Y left-parenthesis z right-parenthesis Over upper E left-parenthesis z right-parenthesis EndFraction equals StartFraction b 0 plus b 1 z Superscript negative 1 Baseline plus dot dot dot dot dot plus b Subscript q Baseline z Superscript negative q Baseline Over 1 minus a 1 z Superscript negative 1 Baseline minus dot dot dot dot minus a Subscript p Baseline z Superscript negative p Baseline EndFraction equals StartFraction upper N left-parenthesis z right-parenthesis Over upper D left-parenthesis z right-parenthesis EndFraction period

      To guarantee stability, the p roots of the denominator polynomial of (z), that is, the values of z for which D(z) = 0, the poles of the transfer function, must lie within the unit circle in the z‐plane, ∣z ∣ < 1.

      Nonlinear predictors: If a measurement is assumed to be generated by an ARMA (p, q) model, the optimal conditional mean predictor of the discrete time random signal {y(k)}

      (3.52)ModifyingAbove y With ampersand c period circ semicolon left-parenthesis k right-parenthesis equals upper E left-bracket y left-parenthesis k right-parenthesis bar y left-parenthesis k minus 1 right-parenthesis comma y left-parenthesis k minus 2 right-parenthesis comma ellipsis comma y left-parenthesis 0 right-parenthesis right-bracket

      is given by

      The corresponding NARMA (p, q) predictor is given by

      (3.55)ModifyingAbove y With ampersand c period circ semicolon left-parenthesis k right-parenthesis equals upper Theta left-parenthesis sigma-summation Underscript i equals 1 Overscript p Endscripts a Subscript i Baseline y left-parenthesis k minus i right-parenthesis plus sigma-summation Underscript j equals 1 Overscript q Endscripts b Subscript j Baseline ModifyingAbove e With ampersand c period circ semicolon left-parenthesis k minus j right-parenthesis right-parenthesis comma

      where the residuals ê left-parenthesis k minus j right-parenthesis equals y left-parenthesis k minus j right-parenthesis minus ModifyingAbove y With ampersand c period circ semicolon left-parenthesis k minus j right-parenthesis comma j = 1, 2, … , q. Equivalently, the simplest form of nonlinear autoregressive (NAR(p)) model is described by

      (3.56)y left-parenthesis k right-parenthesis equals upper Theta left-parenthesis sigma-summation Underscript i equals 1 Overscript p Endscripts a Subscript i Baseline y left-parenthesis k minus i right-parenthesis right-parenthesis plus e left-parenthesis k right-parenthesis

      and its associated predictor is

      (3.57)ModifyingAbove y With ampersand c period circ semicolon left-parenthesis k right-parenthesis equals upper Theta left-parenthesis sigma-summation Underscript ModifyingAbove i With ampersand c period dotab semicolon equals 1 Overscript p Endscripts a Subscript i Baseline y left-parenthesis k minus i right-parenthesis right-parenthesis period

Schematic illustration of nonlinear AR/ARMA predictors.

      and referred to as a NARMA