Numerical Methods in Computational Finance. Daniel J. Duffy

Читать онлайн.
Название Numerical Methods in Computational Finance
Автор произведения Daniel J. Duffy
Жанр Ценные бумаги, инвестиции
Серия
Издательство Ценные бумаги, инвестиции
Год выпуска 0
isbn 9781119719724



Скачать книгу

right-parenthesis period 3rd Row 1st Column Blank 2nd Column upper V equals upper K cubed comma upper W equals upper K Superscript 4 Baseline 4th Row 1st Column Blank 2nd Column upper T left-parenthesis x 1 comma x 2 comma x 3 right-parenthesis equals left-parenthesis x 1 plus x 2 comma x 3 comma x 3 comma 0 right-parenthesis period EndLayout"/>

      A more general linear transformation (in fact, a vector-valued transformation) is:

StartLayout 1st Row 1st Column Blank 2nd Column upper T colon upper K Superscript n Baseline right-arrow upper K Superscript m Baseline 2nd Row 1st Column Blank 2nd Column upper T left-parenthesis x 1 comma ellipsis comma x Subscript n Baseline right-parenthesis equals left-parenthesis f 1 left-parenthesis x 1 comma ellipsis comma x Subscript n Baseline right-parenthesis comma ellipsis comma f Subscript m Baseline left-parenthesis x 1 comma ellipsis comma x Subscript n Baseline right-parenthesis right-parenthesis period EndLayout

      Another example of a mapping is upper T colon upper V left-parenthesis upper K right-parenthesis right-arrow upper V left-parenthesis upper K right-parenthesis comma italic upper T x equals normal lamda x comma normal lamda element-of upper K fixed, and this is called a magnification or a dilation.

      Theorem 4.2 For any given r greater-than-or-equal-to 2:

StartLayout 1st Row 1st Column Blank 2nd Column upper T left-parenthesis normal lamda 1 x 1 plus ellipsis plus normal lamda Subscript r Baseline x Subscript r Baseline right-parenthesis equals normal lamda 1 italic upper T x 1 plus ellipsis plus normal lamda Subscript r Baseline italic upper T x Subscript r Baseline 2nd Row 1st Column Blank 2nd Column normal lamda Subscript j Baseline element-of upper K comma j equals 1 comma ellipsis comma r comma x Subscript j Baseline element-of upper V left-parenthesis upper K right-parenthesis comma j equals 1 comma ellipsis r EndLayout

      is a necessary and sufficient condition for a mapping to be a linear transformation. From this result we can conclude that a linear transformation upper T colon upper V left-parenthesis upper K right-parenthesis right-arrow upper W left-parenthesis upper K right-parenthesis is determined by the images upper T phi 1 comma ellipsis upper T phi Subscript n Baseline in upper W left-parenthesis upper K right-parenthesis of a basis StartSet phi 1 comma ellipsis comma phi Subscript n Baseline EndSet in upper V left-parenthesis upper K right-parenthesis.

      4.5.1 Invariant Subspaces

      We adopt the notation L(V; W) to denote the set of linear transformations from the vector space V to the vector space W.

      Definition 4.6 Let upper T element-of upper L left-parenthesis upper V semicolon upper V right-parenthesis and let U be a subspace of V such that italic upper T upper U subset-of upper U where italic upper T upper U equals left-brace italic upper T x semicolon x element-of upper U right-brace. Then U is called an invariant subspace of V under T, or more briefly, U is T-invariant.

      We take some examples. Each subspace is invariant with respect to the following operators:

StartLayout 1st Row 1st Column Blank 2nd Column upper T 1 comma upper T 2 comma upper T 3 element-of upper L left-parenthesis upper V semicolon upper V right-parenthesis 2nd Row 1st Column Blank 2nd Column upper T 1 x equals 0 for-all x element-of upper V left-parenthesis zero operator right-parenthesis 3rd Row 1st Column Blank 2nd Column upper T 2 x equals x for-all x element-of upper V left-parenthesis identity operator right-parenthesis 4th Row 1st Column Blank 2nd Column upper T 3 x equals normal lamda x for-all x element-of upper V comma normal lamda element-of upper K left-parenthesis fixed right-parenthesis left-parenthesis similarity operator right-parenthesis period EndLayout x equals sigma-summation Underscript j equals 1 Overscript n Endscripts xi Subscript j Baseline e Subscript j

      We define the vector left-parenthesis m less-than n right-parenthesis:

italic upper P x equals sigma-summation Underscript j equals 1 Overscript m Endscripts xi Subscript j Baseline e Subscript j Baseline period

      Then P is a linear operator (called the projection operator) on to the subspace upper K Superscript m spanned by the vectors StartSet e 1 comma ellipsis comma e Subscript m Baseline EndSet.

      The projection operator has the following invariant subspaces:

        which remain unchanged and

        that are carried into zero.

      4.5.2 Rank and Nullity

      Definition 4.7 Let upper T element-of upper L left-parenthesis upper V semicolon upper W right-parenthesis. The rank of T is the dimension of the range TV of T. It is denoted by r(T).

      Definition 4.8 Let upper T element-of upper L left-parenthesis upper V semicolon upper W right-parenthesis. The null space (or kernel) of T is the set of vectors x such that upper T left-parenthesis x right-parenthesis equals 0. It is denoted by N(T).

      Definition 4.9 The dimension of the subspace N(T) is called the nullity and is denoted by n(T).

      For example: the zero operator ω has r left-parenthesis omega right-parenthesis equals 0 comma n left-parenthesis omega right-parenthesis equals dimension upper V and the identity operator i has r left-parenthesis i right-parenthesis equals dimension upper V comma n left-parenthesis i right-parenthesis equals 0.

      Theorem 4.3 Let upper T element-of upper L left-parenthesis 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=