Numerical Methods in Computational Finance. Daniel J. Duffy

Читать онлайн.
Название Numerical Methods in Computational Finance
Автор произведения Daniel J. Duffy
Жанр Ценные бумаги, инвестиции
Серия
Издательство Ценные бумаги, инвестиции
Год выпуска 0
isbn 9781119719724



Скачать книгу

      A space X endowed with a metric d is called a metric space and is denoted by (X, d).

      Examples of metrics are:

      1 

      2 Let X be a non-empty set(4.9)

      1 Let X be a set and let be the set of p-integrable Lebesgue functions on X. If , then a metric is:

      Norms and metrics are important quantities when proving convergence results in functional and numerical analysis applications.

      A non-empty subset X of a vector space upper V left-parenthesis upper K right-parenthesis) is called a vector subspace of upper V left-parenthesis upper K right-parenthesis if X forms a vector space over K with the same addition and scalar multiplication as in upper V left-parenthesis upper K right-parenthesis. For example, let P be the set of polynomials in X with real coefficients, and let polynomial addition and multiplication by real numbers be defined by:

      (4.10)StartLayout 1st Row 1st Column Blank 2nd Column p left-parenthesis x right-parenthesis equals sigma-summation a Subscript j Baseline x Superscript j Baseline comma q left-parenthesis x right-parenthesis equals sigma-summation b Subscript j Baseline x Superscript j Baseline 2nd Row 1st Column Blank 2nd Column p left-parenthesis x right-parenthesis plus q left-parenthesis x right-parenthesis equals sigma-summation left-parenthesis a Subscript j Baseline plus b Subscript j Baseline right-parenthesis x Superscript j Baseline 3rd Row 1st Column Blank 2nd Column alpha p left-parenthesis x right-parenthesis equals sigma-summation left-parenthesis alpha a Subscript j Baseline right-parenthesis x Superscript j Baseline comma alpha element-of normal double struck upper R period EndLayout

      Then upper P Subscript n is a subspace of P, and it is also a subspace of upper P Subscript m Baseline comma m greater-than-or-equal-to n.

      We say that a subset X of a vector space upper V left-parenthesis upper K right-parenthesis is said to be closed under addition if whenever x 1 comma x 2 element-of upper X, then x 1 plus x 2 element-of upper X. A subset X of a vector space upper V left-parenthesis upper K right-parenthesis is said to be closed under scalar multiplication if whenever normal lamda element-of upper K and x element-of upper X then normal lamda x element-of upper X.

      Theorem 4.1 A subset X of a vector space upper V left-parenthesis upper K right-parenthesis is a subspace if and only if:

      (4.12)normal lamda 1 x 1 plus normal lamda 2 x 2 element-of upper X for normal lamda 1 comma normal lamda 2 element-of upper K comma x 1 comma x 2 element-of upper X period

      An exercise: let x 1 comma ellipsis comma x Subscript r Baseline be any r elements of a vector space upper V left-parenthesis upper K right-parenthesis. Prove that the set U of all elements of upper V left-parenthesis upper K right-parenthesis that can be written in the form sigma-summation Underscript j equals 1 Overscript r Endscripts normal lamda Subscript j Baseline x Subscript j Baseline comma normal lamda Subscript j Baseline element-of upper K comma j equals 1 comma ellipsis comma r forms a subspace of upper V left-parenthesis upper K right-parenthesis.

      We give an example of a subset X of upper K squared defined by:

      (4.13)StartLayout 1st Row 1st Column Blank 2nd Column upper X equals left-brace x equals left-parenthesis t comma t squared right-parenthesis semicolon t element-of upper K right-brace 2nd Row 1st Column Blank 2nd Column x 1 plus x 2 equals left-parenthesis t 1 comma t 1 squared right-parenthesis plus left-parenthesis t 1 comma t 2 squared right-parenthesis equals left-parenthesis t 1 plus t 2 comma left-parenthesis t 1 squared plus t 2 squared right-parenthesis right-parenthesis 3rd Row 1st Column Blank 2nd Column normal lamda x equals left-parenthesis normal lamda t comma normal lamda squared t squared right-parenthesis period EndLayout

      It is easily verified that X is a vector space over K, but X is not a subspace of upper K squared because:

StartLayout 1st Row 1st Column Blank 2nd Column Blank 3rd Column x 1 comma x 2 element-of upper X 2nd Row 1st Column Blank 2nd Column Blank 3rd Column normal lamda left-parenthesis x 1 plus x 2 right-parenthesis factorial equals normal lamda x 1 plus normal lamda x 2 EndLayout

      and these two quantities are thus not the same!

      We are now interested in finding a minimal subspace U of independent vectors containing a set X (U contains X) such that any vector in X can be written as a linear combination of these vectors. In this case we say that X spans U. We are particularly interested in the case upper X equals upper V left-parenthesis upper K right-parenthesis, that is subsets of upper V left-parenthesis upper K right-parenthesis that span