Numerical Methods in Computational Finance. Daniel J. Duffy

Читать онлайн.
Название Numerical Methods in Computational Finance
Автор произведения Daniel J. Duffy
Жанр Ценные бумаги, инвестиции
Серия
Издательство Ценные бумаги, инвестиции
Год выпуска 0
isbn 9781119719724



Скачать книгу

V left-parenthesis upper K right-parenthesis right-parenthesis 2nd Row 1st Column Blank 2nd Column upper A 2 colon x plus y equals y plus x 3rd Row 1st Column Blank 2nd Column upper A 3 colon Exists unique 0 in upper V such that 0 plus x equals x plus 0 equals x 4th Row 1st Column Blank 2nd Column upper A 4 colon For each x in upper V there exists a unique y such that x plus y equals 0 5th Row 1st Column Blank 2nd Column left-parenthesis italic the negative of x right-parenthesis comma called negative x period EndLayout"/>

      Axiom A1 states that addition is associative, and axiom A2 states that addition is commutative. The element 0 is called the zero element of the vector space.

      Scalar multiplication is defined by the axioms left-parenthesis a comma b element-of upper K and x comma y element-of upper V right-parenthesis:

      (4.3)StartLayout 1st Row 1st Column Blank 2nd Column normal upper B Baseline 1 colon a left-parenthesis x plus y right-parenthesis equals italic a x plus italic a y 2nd Row 1st Column Blank 2nd Column normal upper B Baseline 2 colon left-parenthesis a plus b right-parenthesis x equals italic a x plus italic b x 3rd Row 1st Column Blank 2nd Column normal upper B Baseline 3 colon left-parenthesis italic a b right-parenthesis x equals a left-parenthesis italic b x right-parenthesis 4th Row 1st Column Blank 2nd Column normal upper B Baseline 4 colon 1 x equals x left-parenthesis 1 is the unit element right-parenthesis period EndLayout

      The prototypical examples of vector spaces are n-dimensional vectors and rectangular matrices over a field K:

      (4.4)StartLayout 1st Row 1st Column Blank 2nd Column x equals left-parenthesis x 1 comma ellipsis comma x Subscript n Baseline right-parenthesis left-parenthesis x Subscript j Baseline element-of upper K comma j equals 1 comma ellipsis comma n right-parenthesis 2nd Row 1st Column Blank 2nd Column y equals left-parenthesis y 1 comma ellipsis comma y Subscript n Baseline right-parenthesis left-parenthesis y Subscript j Baseline element-of upper K comma j equals 1 comma ellipsis comma n right-parenthesis 3rd Row 1st Column Blank 2nd Column x comma y element-of upper K Superscript n Baseline 4th Row 1st Column Blank 2nd Column left-parenthesis x plus y right-parenthesis equals left-parenthesis x 1 plus y 1 comma ellipsis comma x Subscript n Baseline plus y Subscript n Baseline right-parenthesis 5th Row 1st Column Blank 2nd Column normal lamda x equals left-parenthesis normal lamda x 1 comma ellipsis comma normal lamda x Subscript n Baseline right-parenthesis comma normal lamda element-of upper K period EndLayout

      For matrices:

      (4.5)StartLayout 1st Row 1st Column Blank 2nd Column m 1 equals left-parenthesis a Subscript italic i j Baseline right-parenthesis comma m 2 equals left-parenthesis b Subscript italic i j Baseline right-parenthesis comma 1 less-than-or-equal-to i less-than-or-equal-to m comma 1 less-than-or-equal-to j less-than-or-equal-to n 2nd Row 1st Column Blank 2nd Column m 1 plus m 2 equals left-parenthesis a Subscript italic i j Baseline plus b Subscript italic i j Baseline right-parenthesis 3rd Row 1st Column Blank 2nd Column normal lamda m 1 equals left-parenthesis normal lamda a Subscript italic i j Baseline right-parenthesis comma normal lamda element-of upper K period EndLayout

      We now define an important non-negative real-valued function on a vector space V called a norm. It has the following properties:

      (4.6)StartLayout 1st Row 1st Column Blank 2nd Column double-vertical-bar x double-vertical-bar greater-than-or-equal-to 0 semicolon double-vertical-bar x double-vertical-bar equals 0 i f f x equals 0 left-parenthesis if and only if x equals 0 right-parenthesis 2nd Row 1st Column Blank 2nd Column double-vertical-bar normal lamda x double-vertical-bar equals StartAbsoluteValue normal lamda EndAbsoluteValue double-vertical-bar x double-vertical-bar 3rd Row 1st Column Blank 2nd Column double-vertical-bar x 1 plus x 2 double-vertical-bar less-than-or-equal-to double-vertical-bar x 1 double-vertical-bar plus double-vertical-bar x 2 double-vertical-bar left-parenthesis x 1 comma x 2 element-of upper V comma normal lamda element-of upper K right-parenthesis period EndLayout

      Some examples of norms for two-dimensional vectors are:

StartLayout 1st Row 1st Column Blank 2nd Column x equals left-parenthesis x 1 comma x 2 right-parenthesis comma x element-of normal double struck upper R squared 2nd Row 1st Column Blank 2nd Column double-vertical-bar x double-vertical-bar equals StartRoot x 1 squared plus x 2 squared EndRoot 3rd Row 1st Column Blank 2nd Column double-vertical-bar x double-vertical-bar equals max left-parenthesis StartAbsoluteValue x 1 EndAbsoluteValue comma StartAbsoluteValue x 2 EndAbsoluteValue right-parenthesis period EndLayout

      The following norms for vectors and matrices are used in applications:

      (4.7)StartLayout 1st Row 1st Column Blank 2nd Column Euclidean left-parenthesis l 2 right-parenthesis norm double-vertical-bar x double-vertical-bar Subscript 2 Baseline equals left-parenthesis sigma-summation Underscript j equals 1 Overscript n Endscripts x Subscript j Superscript 2 Baseline right-parenthesis Superscript one half Baseline 2nd Row 1st Column Blank 2nd Column l 1 norm double-vertical-bar x double-vertical-bar Subscript 1 Baseline equals sigma-summation Underscript j equals 1 Overscript n Endscripts StartAbsoluteValue x Subscript j Baseline EndAbsoluteValue 3rd Row 1st Column Blank 2nd Column l Subscript infinity Baseline norm double-vertical-bar x double-vertical-bar Subscript infinity Baseline equals max Underscript 1 less-than-or-equal-to j less-than-or-equal-to n Endscripts StartAbsoluteValue x Subscript j Baseline EndAbsoluteValue period EndLayout

      (4.8)StartLayout 1st Row 1st Column Blank 2nd Column upper L 1 norm colon double-vertical-bar upper A double-vertical-bar Subscript 1 Baseline equals max Underscript 1 less-than-or-equal-to j less-than-or-equal-to n Endscripts left-parenthesis sigma-summation Underscript i equals 1 Overscript n Endscripts StartAbsoluteValue a Subscript italic i j Baseline EndAbsoluteValue right-parenthesis 2nd Row 1st Column Blank 2nd Column upper L Subscript infinity Baseline norm colon double-vertical-bar upper A double-vertical-bar Subscript infinity Baseline equals max Underscript 1 less-than-or-equal-to i less-than-or-equal-to n Endscripts left-parenthesis sigma-summation Underscript j equals 1 Overscript n Endscripts StartAbsoluteValue a Subscript italic i j Baseline EndAbsoluteValue right-parenthesis period EndLayout

StartLayout 1st Row 1st Column Blank 2nd Column Blank 3rd Column upper D 1 colon d left-parenthesis x comma y right-parenthesis greater-than-or-equal-to 0 semicolon d left-parenthesis x comma y right-parenthesis equals 0 left right double arrow x equals y 2nd Row 1st Column Blank 2nd Column Blank 3rd Column upper D 2 colon d left-parenthesis x comma y right-parenthesis equals d left-parenthesis y comma x right-parenthesis 3rd Row 1st Column Blank 2nd Column Blank 3rd Column upper D 3 colon d left-parenthesis x comma y right-parenthesis less-than-or-equal-to d left-parenthesis x comma z right-parenthesis plus d left-parenthesis z comma y right-parenthesis left-parenthesis italic triangle inequality right-parenthesis period EndLayout