Прочая образовательная литература

Различные книги в жанре Прочая образовательная литература

Handbook of Free Radical Initiators

T. Pokidova S.

Free radical initiators–chemical molecules which easily decompose into free radicals–serve as reactive intermediates in synthetic methodologies such as organic and polymer synthesis as well as in technological processes, oligomerization, network formation, and kinetic research. The Handbook of Free Radical Initiators presents an up-to-date account of the physicochemical data on radical initiators and reactions of radical generation. Individual chapters include: Dialkyl Peroxides and Hydroperoxides Diacyl Peroxides, Peresters, and Organic Polyoxides Azo-Compounds Bimolecular Reactions of Free Radical Generation by Ozone, Dioxygen, Hydroperoxides, and Haloid Molecules Free Radical Abstraction Reactions Free Radical Addition Reactions Free Radical Recombination and Disproportoination Reactions Professionals and academic researchers in chemical engineering, pharmaceuticals, biotechnology, plastics, and rubbers will find the Handbook of Free Radical Initiators to be a distinguished, vital resource.

Applied Colloid and Surface Chemistry

Richard Pashley

Applied Colloid and Surface Chemistry is a broad introduction to this interdisciplinary field. Taking a genuinely applied approach, with applications drawn from a wide range of industries, this book will meet the demands of the student and professional currently working in the field. The text includes keynote sections written by practicing industrial research scientists, bringing to the reader a wealth of real industrial examples. These examples range from water treatment through to soil management as well as examples taken from the coatings and photographic industries. To aid accessibility, some of the more demanding mathematical derivations are separated from the main text, enabling them to be avoided as required. With carefully structured chapters, starting with learning objectives, and containing tutorial questions with answers and explanatory notes, this text is invaluable for undergraduates taking a first course on colloid and surface chemistry. This book will also be suitable to postgraduates and professionals, who need an up-to-date account of the subject.

Catalysts for Fine Chemical Synthesis, Metal Catalysed Carbon9;-Carbon Bond9;-Forming Reactions

John Whittall

The chemist has a vast range of high-tech catalysts to use when working in fine chemical synthesis but the catalysts are generally hard to use and require both time, skill and experience to handle properly. The Catalysts for Fine Chemical Synthesis series contains tested and validated procedures which provide a unique range resources for chemists who work in organic chemistry. «… of great value to synthetic organic chemists…» (The Chemists, Summer 2003) Volume 3 in the series focuses on catalysts for carbon-carbon bond formation and presents practical and detailed protocols on how to use sophisticated catalysts by the «inventors» and «developers» who created them. The combination of protocols and review commentaries helps the reader to easily and quickly understand and use the new high-tech catalysts.

Chemical Thermodynamics at a Glance

H. Donald Brooke Jenkins

Chemical thermodynamics considers the energy transformations which drive or which occur as a result of chemical reactions. It is a central discipline of chemistry and chemical engineering, allowing prediction of the direction of spontaneous chemical change and the position of chemical equilibrium in any reacting system. Being grounded in maths, it is often perceived as a difficult subject and many students are never fully comfortable with it. Chemical Thermodynamics at a Glance provides a concise overview of the main principles of Chemical Thermodynamics for students studying chemistry and related courses at undergraduate level. Based on the highly successful and student friendly “at a Glance” approach, the information is presented in integrated, self contained double page spreads of text and illustrative material. The material developed in this book has been chosen to ensure the student grasps the essence of thermodynamics, so those wanting an accessible overview will find this book an ideal source of the information they require. In addition, the structured presentation will provide an invaluable aid to revision for students preparing for examinations.

An Introduction to Aqueous Electrolyte Solutions

Margaret Wright Robson

An Introduction to Aqueous Electrolyte Solutions is a comprehensive coverage of solution equilibria and properties of aqueous ionic solutions. Acid/base equilibria, ion pairing, complex formation, solubilities, reversible emf’s and experimental conductance studies are all illustrated by many worked examples. Theories of non-ideality leading to expressions for activity coefficients, conductance theories and investigations of solvation are described; great care being taken to provide detailed verbal clarification of the key concepts of these theories. The theoretical development focuses on the physical aspects, with the mathematical development being fully explained. An overview of the thermodynamic background is given. Each chapter includes intended learning outcomes and worked problems and examples to encourage student understanding of this multidisciplinary subject. An invaluable text for students taking courses in chemistry and chemical engineering. This book will also be useful for biology, biochemistry and biophysics students who may be required to study electrochemistry as part of their course. A comprehensive introduction to the behaviour and properties of aqueous ionic solutions, including clear explanation and development of key concepts and theories Clear, student friendly style clarifying complex aspects which students find difficult Key developments in concepts and theory explained in a descriptive manner to encourage student understanding Includes worked problems and examples throughout

Name Reactions for Homologation, Part 1

Jie Jack Li

A valuable addition to the literature by any measure and surely will prove its merit in years to come. The new knowledge that arises with its help will be impressive and of great benefit to humankind. —From the Foreword by E. J. Corey, Nobel Prize Laureate An invaluable guide to name reactions and reagents for homologations Name Reactions for Homologations, Part I of Wiley's Comprehensive Name Reactions series comprises a comprehensive treatise on name reactions for homologations. With contributions from world-recognized authorities in the field, this reference offers an up-to-date, concise compilation of the most commonly used and widely known name reactions and reagents. Part I discusses Organometallics, Carbon-chain Homologation, and Radical Chemistry. Arranged alphabetically by name reactions, the listing provides: Description of the reaction Historical perspective A mechanism for the reaction Variations and improvements on the reaction Synthetic utilities of the reaction Experimental details References to the current primary literature Armed with this invaluable resource, both students and professionals will have at their fingertips a comprehensive guide to important mechanisms and phenomena in homologation.

Gene Family Targeted Molecular Design

Karen Lackey

As research progresses and information continues to proliferate in the field of molecular design for therapeutic use, there is a need for a reference that brings current theory and proven practice together in a how-to volume. This reference guides scientists new to the field on how to design small molecules that interact with critical protein targets. The chapters condense useful material into a manageable format which is carefully organized and presented. It offers an essential resource for a variety of chemists in academia, and the biotech and pharmaceutical industries, as well as professionals in complementary fields.

A Chemist's Guide to Valence Bond Theory

Sason Shaik S.

This reference on current VB theory and applications presents a practical system that can be applied to a variety of chemical problems in a uniform manner. After explaining basic VB theory, it discusses VB applications to bonding problems, aromaticity and antiaromaticity, the dioxygen molecule, polyradicals, excited states, organic reactions, inorganic/organometallic reactions, photochemical reactions, and catalytic reactions. With a guide for performing VB calculations, exercises and answers, and numerous solved problems, this is the premier reference for practitioners and upper-level students.

Multiscale Simulation Methods for Nanomaterials

Sanat Mohanty

This book stems from the American Chemical Society symposium, Large Scale Molecular Dynamics, Nanoscale, and Mesoscale Modeling and Simulation: Bridging the Gap, that delved into the latest methodologies and applications for largescale, multiscale, and mesoscale modeling and simulation. It presents real-world applications of simulated and synthesized materials, including organic-, inorganic-, bio-, and nanomaterials, and helps readers determine the best method for their simulation. It gets novices up to speed quickly and helps experienced practitioners discover novel approaches and alternatives.

Progress in Physical Organic Chemistry

Robert Taft W.

Progress in Physical Organic Chemistry is dedicated to reviewing the latest investigations into organic chemistry that use quantitative and mathematical methods. These reviews help readers understand the importance of individual discoveries and what they mean to the field as a whole. Moreover, the authors, leading experts in their fields, offer unique and thought-provoking perspectives on the current state of the science and its future directions. With so many new findings published in a broad range of journals, Progress in Physical Organic Chemistry fills the need for a central resource that presents, analyzes, and contextualizes the major advances in the field. The articles published in Progress in Physical Organic Chemistry are not only of interest to scientists working in physical organic chemistry, but also scientists working in the many subdisciplines of chemistry in which physical organic chemistry approaches are now applied, such as biochemistry, pharmaceutical chemistry, and materials and polymer science. Among the topics explored in this series are reaction mechanisms; reactive intermediates; combinatorial strategies; novel structures; spectroscopy; chemistry at interfaces; stereochemistry; conformational analysis; quantum chemical studies; structure-reactivity relationships; solvent, isotope and solid-state effects; long-lived charged, sextet or open-shell species; magnetic, non-linear optical and conducting molecules; and molecular recognition.