Прочая образовательная литература

Различные книги в жанре Прочая образовательная литература

Advances in Chemical Physics, Volume 19

Ilya Prigogine

The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.

Advances in Chemical Physics, Volume 18

Ilya Prigogine

The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.

Advances in Chemical Physics, Volume 17

Ilya Prigogine

The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.

Advances in Chemical Physics, Volume 16

Ilya Prigogine

The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.

Handbook of Laser-Induced Breakdown Spectroscopy

David Cremers A.

Starting from fundamentals and moving through a thorough discussion of equipment, methods, and techniques, this text provides a unique reference source for this important new analysis method. The authors use a combination of tutorial discussions ranging from basic principles up to more advanced descriptions along with extensive figures and photographs to clearly explain topics addressed in the text. It is intended that the data tables will be located within the Education section of SpectroscopyNOW.com Provides a thorough but understandable discussion of the basic principles, instrumentation, methodology, and sampling procedures of the method based on atomic emission spectroscopy. Presents a discussion of the many advantages of the method along with limitations, to provide the reader a balanced overview of capabilities of the method Presents an overview of some real-world applications of the method Provides an up-to-date list of references to LIBS literature and a unique list of element detection limits using a uniform analysis method

Advanced ESR Methods in Polymer Research

Shulamith Schlick

A definitive work on ESR and polymer science by today's leading authorities The past twenty years have seen extraordinary advances in electron spin resonance (ESR) techniques, particularly as they apply to polymeric materials. With contributions from over a dozen of the world's top polymer scientists, Advanced ESR Methods in Polymer Research is the first book to bring together all the current trends in this exciting field into one comprehensive reference. Part I establishes the fundamentals of ESR, from experimental techniques to data analysis, and serves as a valuable overview for the beginning ESR student. Part II introduces the broad range of ESR applications to polymeric systems, including living radical polymerization, block copoly-mers, polymer solutions, ion-containing polymers, polymer lattices, membranes in fuel cells, degradation, polymer coatings, dendrimers, and conductive polymers. By exposing readers to the great potential of ESR, the authors hope to encourage more extensive application of these methods.

Thin-Film Crystalline Silicon Solar Cells

Rolf Brendel

This introduction to the physics of silicon solar cells focuses on thin cells, while reviewing and discussing the current status of the important technology. An analysis of the spectral quantum efficiency of thin solar cells is given as well as a full set of analytical models. This is the first comprehensive treatment of light trapping techniques for the enhancement of the optical absorption in thin silicon films.

Kinetics of First-order Phase Transitions

Vitaly Slezov V.

Filling a gap in the literature, this crucial publication on the renowned Lifshitz-Slezov-Wagner Theory of first-order phase transitions is authored by one of the scientists who gave it its name. Prof Slezov spent decades analyzing this topic and obtained a number of results that form the cornerstone of this rapidly developing branch of science. Following an analysis of unresolved problems together with proposed solutions, the book develops a theoretical description of the overall course of first-order phase transformations, starting from the nucleation state right up to the late stages of coarsening. In so doing, the author illustrates the results by way of numerical computations and experimental applications. The outline of the general results is performed for segregation processes in solutions and the results used in the analysis of a variety of different topics, such as phase formation in multi-component solutions, boiling in one- and multi-component liquids, vacancy cluster evolution in solids with and without influence of radiation, as well as phase separation in helium at low temperatures. The result is a detailed overview of the theoretical description of the whole course of nucleation-growth processes and applications for a wide audience of scientists and students.

Solid-State Photoemission and Related Methods

Wolfgang Schattke

Photoemission is one of the principal techniques for the characterization and investigation of condensed matter systems. The field has experienced many developments in recent years, which may also be put down to important achievements in closely related areas. This timely and up-to-date handbook is written by experts in the field who provide the background needed by both experimentalists and theorists. It represents an interesting framework for showing the connection between theory and experiment by bringing together different concepts in the investigation of the properties of materials. The work addresses the geometric and electronic structure of solid surfaces and interfaces, theoretical methods for direct computation of spectra, experimental techniques for data acquisition, and physical models for direct data interpretation. It also includes such recent developments as full hemisphere acceptance in photoemission, two-electron photoemission, (e, 2e) electron diffraction, and photoelectron-electron/hole interaction.

Mesoscopic Electronics in Solid State Nanostructures

Thomas Heinzel

This text treats electronic transport in the regime where conventional textbook models are no longer applicable, including the effect of electronic phase coherence, energy quantization and single-electron charging. This second edition is completely updated and expanded, and now comprises new chapters on spin electronics and quantum information processing, transport in inhomogeneous magnetic fields, organic/molecular electronics, and applications of field effect transistors. The book also provides an overview of semiconductor processing technologies and experimental techniques. With a number of examples and problems with solutions, this is an ideal introduction for students and beginning researchers in the field. «This book is a useful tool, too, for the experienced researcher to get a summary of recent developments in solid state nanostructures. I applaud the author for a marvellous contribution to the scientific community of mesoscopic electronics.» Prof. K. Ensslin, Solid State Physics Laboratory, ETH Zurich