Математика

Различные книги в жанре Математика

Introduction to Discrete Dynamical Systems and Chaos

Группа авторов

A timely, accessible introduction to the mathematics of chaos. The past three decades have seen dramatic developments in the theory of dynamical systems, particularly regarding the exploration of chaotic behavior. Complex patterns of even simple processes arising in biology, chemistry, physics, engineering, economics, and a host of other disciplines have been investigated, explained, and utilized. Introduction to Discrete Dynamical Systems and Chaos makes these exciting and important ideas accessible to students and scientists by assuming, as a background, only the standard undergraduate training in calculus and linear algebra. Chaos is introduced at the outset and is then incorporated as an integral part of the theory of discrete dynamical systems in one or more dimensions. Both phase space and parameter space analysis are developed with ample exercises, more than 100 figures, and important practical examples such as the dynamics of atmospheric changes and neural networks. An appendix provides readers with clear guidelines on how to use Mathematica to explore discrete dynamical systems numerically. Selected programs can also be downloaded from a Wiley ftp site (address in preface). Another appendix lists possible projects that can be assigned for classroom investigation. Based on the author's 1993 book, but boasting at least 60% new, revised, and updated material, the present Introduction to Discrete Dynamical Systems and Chaos is a unique and extremely useful resource for all scientists interested in this active and intensely studied field. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.

Introduction to the Theory of Error-Correcting Codes

Группа авторов

A complete introduction to the many mathematical tools used to solve practical problems in coding. Mathematicians have been fascinated with the theory of error-correcting codes since the publication of Shannon's classic papers fifty years ago. With the proliferation of communications systems, computers, and digital audio devices that employ error-correcting codes, the theory has taken on practical importance in the solution of coding problems. This solution process requires the use of a wide variety of mathematical tools and an understanding of how to find mathematical techniques to solve applied problems. Introduction to the Theory of Error-Correcting Codes, Third Edition demonstrates this process and prepares students to cope with coding problems. Like its predecessor, which was awarded a three-star rating by the Mathematical Association of America, this updated and expanded edition gives readers a firm grasp of the timeless fundamentals of coding as well as the latest theoretical advances. This new edition features: * A greater emphasis on nonlinear binary codes * An exciting new discussion on the relationship between codes and combinatorial games * Updated and expanded sections on the Vashamov-Gilbert bound, van Lint-Wilson bound, BCH codes, and Reed-Muller codes * Expanded and updated problem sets. Introduction to the Theory of Error-Correcting Codes, Third Edition is the ideal textbook for senior-undergraduate and first-year graduate courses on error-correcting codes in mathematics, computer science, and electrical engineering.

Probabilistic Combinatorial Optimization on Graphs

Vangelis Paschos Th.

This title provides a comprehensive survey over the subject of probabilistic combinatorial optimization, discussing probabilistic versions of some of the most paradigmatic combinatorial problems on graphs, such as the maximum independent set, the minimum vertex covering, the longest path and the minimum coloring. Those who possess a sound knowledge of the subject mater will find the title of great interest, but those who have only some mathematical familiarity and knowledge about complexity and approximation theory will also find it an accessible and informative read.

Numerical Solution of Ordinary Differential Equations

Weimin Han

A concise introduction to numerical methodsand the mathematical framework neededto understand their performance Numerical Solution of Ordinary Differential Equations presents a complete and easy-to-follow introduction to classical topics in the numerical solution of ordinary differential equations. The book's approach not only explains the presented mathematics, but also helps readers understand how these numerical methods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringing together and categorizing different types of problems in order to help readers comprehend the applications of ordinary differential equations. In addition, the authors' collective academic experience ensures a coherent and accessible discussion of key topics, including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to test and build their knowledge of the presented methods, and a related Web site features MATLAB® programs that facilitate the exploration of numerical methods in greater depth. Detailed references outline additional literature on both analytical and numerical aspects of ordinary differential equations for further exploration of individual topics. Numerical Solution of Ordinary Differential Equations is an excellent textbook for courses on the numerical solution of differential equations at the upper-undergraduate and beginning graduate levels. It also serves as a valuable reference for researchers in the fields of mathematics and engineering.

Partial Differential Equations of Applied Mathematics

Группа авторов

This new edition features the latest tools for modeling, characterizing, and solving partial differential equations The Third Edition of this classic text offers a comprehensive guide to modeling, characterizing, and solving partial differential equations (PDEs). The author provides all the theory and tools necessary to solve problems via exact, approximate, and numerical methods. The Third Edition retains all the hallmarks of its previous editions, including an emphasis on practical applications, clear writing style and logical organization, and extensive use of real-world examples. Among the new and revised material, the book features: * A new section at the end of each original chapter, exhibiting the use of specially constructed Maple procedures that solve PDEs via many of the methods presented in the chapters. The results can be evaluated numerically or displayed graphically. * Two new chapters that present finite difference and finite element methods for the solution of PDEs. Newly constructed Maple procedures are provided and used to carry out each of these methods. All the numerical results can be displayed graphically. * A related FTP site that includes all the Maple code used in the text. * New exercises in each chapter, and answers to many of the exercises are provided via the FTP site. A supplementary Instructor's Solutions Manual is available. The book begins with a demonstration of how the three basic types of equations-parabolic, hyperbolic, and elliptic-can be derived from random walk models. It then covers an exceptionally broad range of topics, including questions of stability, analysis of singularities, transform methods, Green's functions, and perturbation and asymptotic treatments. Approximation methods for simplifying complicated problems and solutions are described, and linear and nonlinear problems not easily solved by standard methods are examined in depth. Examples from the fields of engineering and physical sciences are used liberally throughout the text to help illustrate how theory and techniques are applied to actual problems. With its extensive use of examples and exercises, this text is recommended for advanced undergraduates and graduate students in engineering, science, and applied mathematics, as well as professionals in any of these fields. It is possible to use the text, as in the past, without use of the new Maple material.

Numerical Solution of Partial Differential Equations in Science and Engineering

Leon Lapidus

From the reviews of Numerical Solution of Partial Differential Equations in Science and Engineering: «The book by Lapidus and Pinder is a very comprehensive, even exhaustive, survey of the subject . . . [It] is unique in that it covers equally finite difference and finite element methods.» Burrelle's «The authors have selected an elementary (but not simplistic) mode of presentation. Many different computational schemes are described in great detail . . . Numerous practical examples and applications are described from beginning to the end, often with calculated results given.» Mathematics of Computing «This volume . . . devotes its considerable number of pages to lucid developments of the methods [for solving partial differential equations] . . . the writing is very polished and I found it a pleasure to read!» Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen and Eli L. Isaacson. A modern, practical look at numerical analysis, this book guides readers through a broad selection of numerical methods, implementation, and basic theoretical results, with an emphasis on methods used in scientific computation involving differential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan. Presenting an easily accessible treatment of mathematical methods for scientists and engineers, this acclaimed work covers fluid mechanics and calculus of variations as well as more modern methods-dimensional analysis and scaling, nonlinear wave propagation, bifurcation, and singular perturbation. 1996 (0-471-16513-1) 496 pp.

A Posteriori Error Estimation in Finite Element Analysis

Mark Ainsworth

An up-to-date, one-stop reference-complete with applications This volume presents the most up-to-date information available on a posteriori error estimation for finite element approximation in mechanics and mathematics. It emphasizes methods for elliptic boundary value problems and includes applications to incompressible flow and nonlinear problems. Recent years have seen an explosion in the study of a posteriori error estimators due to their remarkable influence on improving both accuracy and reliability in scientific computing. In an effort to provide an accessible source, the authors have sought to present key ideas and common principles on a sound mathematical footing. Topics covered in this timely reference include: * Implicit and explicit a posteriori error estimators * Recovery-based error estimators * Estimators, indicators, and hierarchic bases * The equilibrated residual method * Methodology for the comparison of estimators * Estimation of errors in quantities of interest A Posteriori Error Estimation in Finite Element Analysis is a lucid and convenient resource for researchers in almost any field of finite element methods, and for applied mathematicians and engineers who have an interest in error estimation and/or finite elements.

An Introduction to Nonlinear Partial Differential Equations

Группа авторов

Praise for the First Edition: «This book is well conceived and well written. The author has succeeded in producing a text on nonlinear PDEs that is not only quite readable but also accessible to students from diverse backgrounds.» —SIAM Review A practical introduction to nonlinear PDEs and their real-world applications Now in a Second Edition, this popular book on nonlinear partial differential equations (PDEs) contains expanded coverage on the central topics of applied mathematics in an elementary, highly readable format and is accessible to students and researchers in the field of pure and applied mathematics. This book provides a new focus on the increasing use of mathematical applications in the life sciences, while also addressing key topics such as linear PDEs, first-order nonlinear PDEs, classical and weak solutions, shocks, hyperbolic systems, nonlinear diffusion, and elliptic equations. Unlike comparable books that typically only use formal proofs and theory to demonstrate results, An Introduction to Nonlinear Partial Differential Equations, Second Edition takes a more practical approach to nonlinear PDEs by emphasizing how the results are used, why they are important, and how they are applied to real problems. The intertwining relationship between mathematics and physical phenomena is discovered using detailed examples of applications across various areas such as biology, combustion, traffic flow, heat transfer, fluid mechanics, quantum mechanics, and the chemical reactor theory. New features of the Second Edition also include: Additional intermediate-level exercises that facilitate the development of advanced problem-solving skills New applications in the biological sciences, including age-structure, pattern formation, and the propagation of diseases An expanded bibliography that facilitates further investigation into specialized topics With individual, self-contained chapters and a broad scope of coverage that offers instructors the flexibility to design courses to meet specific objectives, An Introduction to Nonlinear Partial Differential Equations, Second Edition is an ideal text for applied mathematics courses at the upper-undergraduate and graduate levels. It also serves as a valuable resource for researchers and professionals in the fields of mathematics, biology, engineering, and physics who would like to further their knowledge of PDEs.

Modern Real and Complex Analysis

Группа авторов

Modern Real and Complex Analysis Thorough, well-written, and encyclopedic in its coverage, this text offers a lucid presentation of all the topics essential to graduate study in analysis. While maintaining the strictest standards of rigor, Professor Gelbaum's approach is designed to appeal to intuition whenever possible. Modern Real and Complex Analysis provides up-to-date treatment of such subjects as the Daniell integration, differentiation, functional analysis and Banach algebras, conformal mapping and Bergman's kernels, defective functions, Riemann surfaces and uniformization, and the role of convexity in analysis. The text supplies an abundance of exercises and illustrative examples to reinforce learning, and extensive notes and remarks to help clarify important points.

Mathematical Models of Fluid Dynamics

Rainer Ansorge

Without sacrificing scientific strictness, this introduction to the field guides readers through mathematical modeling, the theoretical treatment of the underlying physical laws and the construction and effective use of numerical procedures to describe the behavior of the dynamics of physical flow. The book is carefully divided into three main parts: – The design of mathematical models of physical fluid flow; – A theoretical treatment of the equations representing the model, as Navier-Stokes, Euler, and boundary layer equations, models of turbulence, in order to gain qualitative as well as quantitative insights into the processes of flow events; – The construction and effective use of numerical procedures in order to find quantitative descriptions of concrete physical or technical fluid flow situations. Both students and experts wanting to control or predict the behavior of fluid flows by theoretical and computational fluid dynamics will benefit from this combination of all relevant aspects in one handy volume.