Математика

Различные книги в жанре Математика

Statistical Methods for Comparative Studies

Ariane Auquier

Brings together techniques for the design and analysis of comparative studies. Methods include multivariate matching, standardization and stratification, analysis of covariance, logit analysis, and log linear analysis. Quantitatively assesses techniques' effectiveness in reducing bias. Discusses hypothesis testing, survival analysis, repeated measure design, and causal inference from comparative studies.

Approximation Theorems of Mathematical Statistics

Группа авторов

Approximation Theorems of Mathematical Statistics This convenient paperback edition makes a seminal text in statistics accessible to a new generation of students and practitioners. Approximation Theorems of Mathematical Statistics covers a broad range of limit theorems useful in mathematical statistics, along with methods of proof and techniques of application. The manipulation of «probability» theorems to obtain «statistical» theorems is emphasized. Besides a knowledge of these basic statistical theorems, this lucid introduction to the subject imparts an appreciation of the instrumental role of probability theory. The book makes accessible to students and practicing professionals in statistics, general mathematics, operations research, and engineering the essentials of: * The tools and foundations that are basic to asymptotic theory in statistics * The asymptotics of statistics computed from a sample, including transformations of vectors of more basic statistics, with emphasis on asymptotic distribution theory and strong convergence * Important special classes of statistics, such as maximum likelihood estimates and other asymptotic efficient procedures; W. Hoeffding's U-statistics and R. von Mises's «differentiable statistical functions» * Statistics obtained as solutions of equations («M-estimates»), linear functions of order statistics («L-statistics»), and rank statistics («R-statistics») * Use of influence curves * Approaches toward asymptotic relative efficiency of statistical test procedures

Aspects of Multivariate Statistical Theory

Группа авторов

The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. «. . . the wealth of material on statistics concerning the multivariate normal distribution is quite exceptional. As such it is a very useful source of information for the general statistician and a must for anyone wanting to penetrate deeper into the multivariate field.» -Mededelingen van het Wiskundig Genootschap «This book is a comprehensive and clearly written text on multivariate analysis from a theoretical point of view.» -The Statistician Aspects of Multivariate Statistical Theory presents a classical mathematical treatment of the techniques, distributions, and inferences based on multivariate normal distribution. Noncentral distribution theory, decision theoretic estimation of the parameters of a multivariate normal distribution, and the uses of spherical and elliptical distributions in multivariate analysis are introduced. Advances in multivariate analysis are discussed, including decision theory and robustness. The book also includes tables of percentage points of many of the standard likelihood statistics used in multivariate statistical procedures. This definitive resource provides in-depth discussion of the multivariate field and serves admirably as both a textbook and reference.

Student Solutions Manual to accompany Simulation and the Monte Carlo Method, Student Solutions Manual

Thomas Taimre

This accessible new edition explores the major topics in Monte Carlo simulation Simulation and the Monte Carlo Method, Second Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over twenty-five years ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo Variance reduction techniques such as the transform likelihood ratio method and the screening method The score function method for sensitivity analysis The stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization The cross-entropy method to rare events estimation and combinatorial optimization Application of Monte Carlo techniques for counting problems, with an emphasis on the parametric minimum cross-entropy method An extensive range of exercises is provided at the end of each chapter, with more difficult sections and exercises marked accordingly for advanced readers. A generous sampling of applied examples is positioned throughout the book, emphasizing various areas of application, and a detailed appendix presents an introduction to exponential families, a discussion of the computational complexity of stochastic programming problems, and sample MATLAB® programs. Requiring only a basic, introductory knowledge of probability and statistics, Simulation and the Monte Carlo Method, Second Edition is an excellent text for upper-undergraduate and beginning graduate courses in simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method.

Design and Analysis of Experiments, Volume 1

Klaus Hinkelmann

This user-friendly new edition reflects a modern and accessible approach to experimental design and analysis Design and Analysis of Experiments, Volume 1, Second Edition provides a general introduction to the philosophy, theory, and practice of designing scientific comparative experiments and also details the intricacies that are often encountered throughout the design and analysis processes. With the addition of extensive numerical examples and expanded treatment of key concepts, this book further addresses the needs of practitioners and successfully provides a solid understanding of the relationship between the quality of experimental design and the validity of conclusions. This Second Edition continues to provide the theoretical basis of the principles of experimental design in conjunction with the statistical framework within which to apply the fundamental concepts. The difference between experimental studies and observational studies is addressed, along with a discussion of the various components of experimental design: the error-control design, the treatment design, and the observation design. A series of error-control designs are presented based on fundamental design principles, such as randomization, local control (blocking), the Latin square principle, the split-unit principle, and the notion of factorial treatment structure. This book also emphasizes the practical aspects of designing and analyzing experiments and features: Increased coverage of the practical aspects of designing and analyzing experiments, complete with the steps needed to plan and construct an experiment A case study that explores the various types of interaction between both treatment and blocking factors, and numerical and graphical techniques are provided to analyze and interpret these interactions Discussion of the important distinctions between two types of blocking factors and their role in the process of drawing statistical inferences from an experiment A new chapter devoted entirely to repeated measures, highlighting its relationship to split-plot and split-block designs Numerical examples using SAS® to illustrate the analyses of data from various designs and to construct factorial designs that relate the results to the theoretical derivations Design and Analysis of Experiments, Volume 1, Second Edition is an ideal textbook for first-year graduate courses in experimental design and also serves as a practical, hands-on reference for statisticians and researchers across a wide array of subject areas, including biological sciences, engineering, medicine, pharmacology, psychology, and business.

Solutions Manual to accompany Modern Engineering Statistics

Группа авторов

An introductory perspective on statistical applications in the field of engineering Modern Engineering Statistics presents state-of-the-art statistical methodology germane to engineering applications. With a nice blend of methodology and applications, this book provides and carefully explains the concepts necessary for students to fully grasp and appreciate contemporary statistical techniques in the context of engineering. With almost thirty years of teaching experience, many of which were spent teaching engineering statistics courses, the author has successfully developed a book that displays modern statistical techniques and provides effective tools for student use. This book features: Examples demonstrating the use of statistical thinking and methodology for practicing engineers A large number of chapter exercises that provide the opportunity for readers to solve engineering-related problems, often using real data sets Clear illustrations of the relationship between hypothesis tests and confidence intervals Extensive use of Minitab and JMP to illustrate statistical analyses The book is written in an engaging style that interconnects and builds on discussions, examples, and methods as readers progress from chapter to chapter. The assumptions on which the methodology is based are stated and tested in applications. Each chapter concludes with a summary highlighting the key points that are needed in order to advance in the text, as well as a list of references for further reading. Certain chapters that contain more than a few methods also provide end-of-chapter guidelines on the proper selection and use of those methods. Bridging the gap between statistics education and real-world applications, Modern Engineering Statistics is ideal for either a one- or two-semester course in engineering statistics.

Advances in Telephone Survey Methodology

Lilli Japec

A complete and comprehensive collaboration providing insight on future approaches to telephone survey methodology Over the past fifteen years, advances in technology have transformed the field of survey methodology, from how interviews are conducted to the management and analysis of compiled data. Advances in Telephone Survey Methodology is an all—encompassing and authoritative resource that presents a theoretical, methodological, and statistical treatment of current practices while also establishing a discussion on how state—of—the—art developments in telecommunications have and will continue to revolutionize the telephone survey process. Seventy—five prominent international researchers and practitioners from government, academic, and private sectors have collaborated on this pioneering volume to discuss basic survey techniques and introduce the future directions of the telephone survey. Concepts and findings are organized in four parts—sampling and estimation, data collection, operations, and nonresponse—equipping the reader with the needed practical applications to approach issues such as choice of target population, sample design, questionnaire construction, interviewing training, and measurement error. The book also introduces important topics that have been overlooked in previous literature, including: The impact of mobile telephones on telephone surveys and the rising presence of mobile—only households worldwide The design and construction of questionnaires using Computer Assisted Telephone Interviewing (CATI) software The emerging use of wireless communication and Voice over Internet Protocol (VoIP) versus the telephone Methods for measuring and improving interviewer performance and productivity Privacy, confidentiality, and respondent burden as main factors in telephone survey nonresponse Procedures for the adjustment of nonresponse in telephone surveys In—depth reviews of the literature presented along with a full bibliography, assembled from references throughout the world Advances in Telephone Survey Methodology is an indispensable reference for survey researchers and practitioners in almost any discipline involving research methods such as sociology, social psychology, survey methodology, and statistics. This book also serves as an excellent text for courses and seminars on survey methods at the undergraduate and graduate levels.

Nonparametric Statistics with Applications to Science and Engineering

Brani Vidakovic

A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provided throughout the book. Complete with exercise sets, chapter reviews, and a related Web site that features downloadable MATLAB applications, this book is an essential textbook for graduate courses in engineering and the physical sciences and also serves as a valuable reference for researchers who seek a more comprehensive understanding of modern nonparametric statistical methods.

A Statistical Approach to Neural Networks for Pattern Recognition

Группа авторов

An accessible and up-to-date treatment featuring the connection between neural networks and statistics A Statistical Approach to Neural Networks for Pattern Recognition presents a statistical treatment of the Multilayer Perceptron (MLP), which is the most widely used of the neural network models. This book aims to answer questions that arise when statisticians are first confronted with this type of model, such as: How robust is the model to outliers? Could the model be made more robust? Which points will have a high leverage? What are good starting values for the fitting algorithm? Thorough answers to these questions and many more are included, as well as worked examples and selected problems for the reader. Discussions on the use of MLP models with spatial and spectral data are also included. Further treatment of highly important principal aspects of the MLP are provided, such as the robustness of the model in the event of outlying or atypical data; the influence and sensitivity curves of the MLP; why the MLP is a fairly robust model; and modifications to make the MLP more robust. The author also provides clarification of several misconceptions that are prevalent in existing neural network literature. Throughout the book, the MLP model is extended in several directions to show that a statistical modeling approach can make valuable contributions, and further exploration for fitting MLP models is made possible via the R and S-PLUS® codes that are available on the book's related Web site. A Statistical Approach to Neural Networks for Pattern Recognition successfully connects logistic regression and linear discriminant analysis, thus making it a critical reference and self-study guide for students and professionals alike in the fields of mathematics, statistics, computer science, and electrical engineering.

Maximum Likelihood Estimation and Inference

Группа авторов

This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free ADMB software. Fundamental issues of statistical inference are also examined, with a presentation of some of the philosophical debates underlying the choice of statistical paradigm. Key features: Provides an accessible introduction to pragmatic maximum likelihood modelling. Covers more advanced topics, including general forms of latent variable models (including non-linear and non-normal mixed-effects and state-space models) and the use of maximum likelihood variants, such as estimating equations, conditional likelihood, restricted likelihood and integrated likelihood. Adopts a practical approach, with a focus on providing the relevant tools required by researchers and practitioners who collect and analyze real data. Presents numerous examples and case studies across a wide range of applications including medicine, biology and ecology. Features applications from a range of disciplines, with implementation in R, SAS and/or ADMB. Provides all program code and software extensions on a supporting website. Confines supporting theory to the final chapters to maintain a readable and pragmatic focus of the preceding chapters. This book is not just an accessible and practical text about maximum likelihood, it is a comprehensive guide to modern maximum likelihood estimation and inference. It will be of interest to readers of all levels, from novice to expert. It will be of great benefit to researchers, and to students of statistics from senior undergraduate to graduate level. For use as a course text, exercises are provided at the end of each chapter.