WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. «The writing style is clear and informal, and much of the discussion is oriented to application. In short, the book is a keeper.» –Mathematical Geology «I would highly recommend the addition of this book to the libraries of both students and professionals. It is a useful textbook for the graduate student, because it emphasizes both the philosophy and practice of robustness in regression settings, and it provides excellent examples of precise, logical proofs of theorems. . . .Even for those who are familiar with robustness, the book will be a good reference because it consolidates the research in high-breakdown affine equivariant estimators and includes an extensive bibliography in robust regression, outlier diagnostics, and related methods. The aim of this book, the authors tell us, is ‘to make robust regression available for everyday statistical practice.’ Rousseeuw and Leroy have included all of the necessary ingredients to make this happen.» –Journal of the American Statistical Association
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of History of Probability and Statistics and Their Applications before 1750 «This is a marvelous book . . . Anyone with the slightest interest in the history of statistics, or in understanding how modern ideas have developed, will find this an invaluable resource.» –Short Book Reviews of ISI
A comprehensive overview of experimental design at the advanced level The development and introduction of new experimental designs in the last fifty years has been quite staggering and was brought about largely by an ever-widening field of applications. Design and Analysis of Experiments, Volume 2: Advanced Experimental Design is the second of a two-volume body of work that builds upon the philosophical foundations of experimental design set forth half a century ago by Oscar Kempthorne, and features the latest developments in the field. Volume 1: An Introduction to Experimental Design introduced students at the MS level to the principles of experimental design, including the groundbreaking work of R. A. Fisher and Frank Yates, and Kempthorne's work in randomization theory with the development of derived linear models. Design and Analysis of Experiments, Volume 2 provides more detail about aspects of error control and treatment design, with emphasis on their historical development and practical significance, and the connections between them. Designed for advanced-level graduate students and industry professionals, this text includes coverage of: Incomplete block and row-column designs Symmetrical and asymmetrical factorial designs Systems of confounding Fractional factorial designs, including main effect plans Supersaturated designs Robust design or Taguchi experiments Lattice designs Crossover designs In order to facilitate the application of text material to a broad range of fields, the authors take a general approach to their discussions. To aid in the construction and analysis of designs, many procedures are illustrated using Statistical Analysis System (SAS®) software.
An application-based introduction to the statistical analysis of spatially referenced health data Sparked by the growing interest in statistical methods for the analysis of spatially referenced data in the field of public health, Applied Spatial Statistics for Public Health Data fills the need for an introductory, application-oriented text on this timely subject. Written for practicing public health researchers as well as graduate students in related fields, the text provides a thorough introduction to basic concepts and methods in applied spatial statistics as well as a detailed treatment of some of the more recent methods in spatial statistics useful for public health studies that have not been previously covered elsewhere. Assuming minimal knowledge of spatial statistics, the authors provide important statistical approaches for assessing such questions as: Are newly occurring cases of a disease «clustered» in space? Do the cases cluster around suspected sources of increased risk, such as toxic waste sites or other environmental hazards? How do we take monitored pollution concentrations measured at specific locations and interpolate them to locations where no measurements were taken? How do we quantify associations between local disease rates and local exposures? After reviewing traditional statistical methods used in public health research, the text provides an overview of the basic features of spatial data, illustrates various geographic mapping and visualization tools, and describes the sources of publicly available spatial data that might be useful in public health applications.
A valuable guide to conducting experiments and analyzing data across a wide range of applications Experimental design is an important component of the scientific method. This book provides guidance on planning efficient investigations. It compiles designs for a wide range of experimental situations not previously found in accessible form. Focusing on applications in the physical, engineering, biological, and social sciences, Planning, Construction, and Statistical Analysis of Comparative Experiments is a valuable guide to designing experiments and correctly analyzing and interpreting the results. The authors draw on their years of experience in the classroom and as statistical consultants to research programs on campus, in government, and in industry. The object is always to strike the right balance between mathematical necessities and practical constraints. Serving both as a textbook for students of intermediate statistics and a hands-on reference for active researchers, the text includes: A wide range of applications, including agricultural sciences, animal and biomedical sciences, and industrial engineering studies General formulas for estimation and hypothesis testing, presented in a unified and simplified manner Guidelines for evaluating the power and efficiency of designs that are not perfectly balanced New developments in the design of fractional factorials with non-prime numbers of levels in mixed-level fractional factorials Detailed coverage on the construction of plans and the relationship among categories of designs Thorough coverage of balanced, lattice, cyclic, and alpha designs Strategies for sequences of fractional factorials Data sets and SAS® code on a companion web site An ideal handbook for the investigator planning a research program, the text comes complete with detailed plans of experiments and alternative approaches for added flexibility.
Each topic starts with an explanation of the theoretical background necessary to allow full understanding of the technique and to facilitate future learning of more advanced or new methods and software Explanations are designed to assume as little background in mathematics and statistical theory as possible, except that some knowledge of calculus is necessary for certain parts. SAS commands are provided for applying the methods. (PROC REG, PROC MIXED, and PROC GENMOD) All sections contain real life examples, mostly from epidemiologic research First chapter includes a SAS refresher
Written for practitioners of data mining, data cleaning and database management. Presents a technical treatment of data quality including process, metrics, tools and algorithms. Focuses on developing an evolving modeling strategy through an iterative data exploration loop and incorporation of domain knowledge. Addresses methods of detecting, quantifying and correcting data quality issues that can have a significant impact on findings and decisions, using commercially available tools as well as new algorithmic approaches. Uses case studies to illustrate applications in real life scenarios. Highlights new approaches and methodologies, such as the DataSphere space partitioning and summary based analysis techniques. Exploratory Data Mining and Data Cleaning will serve as an important reference for serious data analysts who need to analyze large amounts of unfamiliar data, managers of operations databases, and students in undergraduate or graduate level courses dealing with large scale data analys is and data mining.
Emphasizes the strategy of experimentation, data analysis, and the interpretation of experimental results. Features numerous examples using actual engineering and scientific studies. Presents statistics as an integral component of experimentation from the planning stage to the presentation of the conclusions. Deep and concentrated experimental design coverage, with equivalent but separate emphasis on the analysis of data from the various designs. Topics can be implemented by practitioners and do not require a high level of training in statistics. New edition includes new and updated material and computer output.
Publication bias is the tendency to decide to publish a study based on the results of the study, rather than on the basis of its theoretical or methodological quality. It can arise from selective publication of favorable results, or of statistically significant results. This threatens the validity of conclusions drawn from reviews of published scientific research. Meta-analysis is now used in numerous scientific disciplines, summarizing quantitative evidence from multiple studies. If the literature being synthesised has been affected by publication bias, this in turn biases the meta-analytic results, potentially producing overstated conclusions. Publication Bias in Meta-Analysis examines the different types of publication bias, and presents the methods for estimating and reducing publication bias, or eliminating it altogether. Written by leading experts, adopting a practical and multidisciplinary approach. Provides comprehensive coverage of the topic including: Different types of publication bias, Mechanisms that may induce them, Empirical evidence for their existence, Statistical methods to address them, Ways in which they can be avoided. Features worked examples and common data sets throughout. Explains and compares all available software used for analysing and reducing publication bias. Accompanied by a website featuring software, data sets and further material. Publication Bias in Meta-Analysis adopts an inter-disciplinary approach and will make an excellent reference volume for any researchers and graduate students who conduct systematic reviews or meta-analyses. University and medical libraries, as well as pharmaceutical companies and government regulatory agencies, will also find this invaluable.
This textbook differs from others in the field in that it has been prepared very much with students and their needs in mind, having been classroom tested over many years. It is a true “learner’s book” made for students who require a deeper understanding of probability and statistics. It presents the fundamentals of the subject along with concepts of probabilistic modelling, and the process of model selection, verification and analysis. Furthermore, the inclusion of more than 100 examples and 200 exercises (carefully selected from a wide range of topics), along with a solutions manual for instructors, means that this text is of real value to students and lecturers across a range of engineering disciplines. Key features: Presents the fundamentals in probability and statistics along with relevant applications. Explains the concept of probabilistic modelling and the process of model selection, verification and analysis. Definitions and theorems are carefully stated and topics rigorously treated. Includes a chapter on regression analysis. Covers design of experiments. Demonstrates practical problem solving throughout the book with numerous examples and exercises purposely selected from a variety of engineering fields. Includes an accompanying online Solutions Manual for instructors containing complete step-by-step solutions to all problems.