Математика

Различные книги в жанре Математика

Statistical Estimation of Epidemiological Risk

Группа авторов

Statistical Estimation of Epidemiological Risk provides coverage of the most important epidemiological indices, and includes recent developments in the field. A useful reference source for biostatisticians and epidemiologists working in disease prevention, as the chapters are self-contained and feature numerous real examples. It has been written at a level suitable for public health professionals with a limited knowledge of statistics. Other key features include: Provides comprehensive coverage of the key epidemiological indices. Includes coverage of various sampling methods, and pointers to where each should be used. Includes up-to-date references and recent developments in the field. Features many real examples, emphasising the practical nature of the book. Each chapter is self-contained, allowing the book to be used as a useful reference source. Includes exercises, enabling use as a course text.

Practical Methods for Design and Analysis of Complex Surveys

Risto Lehtonen

Large surveys are becoming increasingly available for public use, and researchers are often faced with the need to analyse complex survey data to address key scientific issues. For proper analysis it is also important to be aware of the different aspects of the design of complex surveys. Practical Methods for Design and Analysis of Complex Surveys features intermediate and advanced statistical techniques for use in designing and analysing complex surveys. This extensively updated edition features much new material, and detailed practical exercises with links to a Web site, helping instructors and enabling use for distance learning. * Provides a comprehensive introduction to sampling and estimation in descriptive surveys, including design effect statistic and use of auxiliary data. * Includes detailed coverage of complex survey analysis, including design-based ANOVA and logistic regression with GEE estimation. * Contains much new material, including handling of non-sampling errors, and model-assisted estimation for domains. * Features detailed real-li fe case studies, such as multilevel modeling in a multinational educational survey. * Supported by a Web site containing software codes, real data sets, computerized exercises with solutions, and online training materials. Practical Methods for Design and Analysis of Complex Surveys provides a useful practical resource for researchers and practitioners working in the planning, implementation or analysis of complex surveys and opinion polls, including business, educational, health, social, and socio-economic surveys and official statistics. In addition, the book is well suited for use on intermediate and advanced courses in survey sampling.

Numerical Methods in Finance and Economics

Группа авторов

A state-of-the-art introduction to the powerful mathematical and statistical tools used in the field of finance The use of mathematical models and numerical techniques is a practice employed by a growing number of applied mathematicians working on applications in finance. Reflecting this development, Numerical Methods in Finance and Economics: A MATLAB?-Based Introduction, Second Edition bridges the gap between financial theory and computational practice while showing readers how to utilize MATLAB?–the powerful numerical computing environment–for financial applications. The author provides an essential foundation in finance and numerical analysis in addition to background material for students from both engineering and economics perspectives. A wide range of topics is covered, including standard numerical analysis methods, Monte Carlo methods to simulate systems affected by significant uncertainty, and optimization methods to find an optimal set of decisions. Among this book's most outstanding features is the integration of MATLAB?, which helps students and practitioners solve relevant problems in finance, such as portfolio management and derivatives pricing. This tutorial is useful in connecting theory with practice in the application of classical numerical methods and advanced methods, while illustrating underlying algorithmic concepts in concrete terms. Newly featured in the Second Edition: * In-depth treatment of Monte Carlo methods with due attention paid to variance reduction strategies * New appendix on AMPL in order to better illustrate the optimization models in Chapters 11 and 12 * New chapter on binomial and trinomial lattices * Additional treatment of partial differential equations with two space dimensions * Expanded treatment within the chapter on financial theory to provide a more thorough background for engineers not familiar with finance * New coverage of advanced optimization methods and applications later in the text Numerical Methods in Finance and Economics: A MATLAB?-Based Introduction, Second Edition presents basic treatments and more specialized literature, and it also uses algebraic languages, such as AMPL, to connect the pencil-and-paper statement of an optimization model with its solution by a software library. Offering computational practice in both financial engineering and economics fields, this book equips practitioners with the necessary techniques to measure and manage risk.

Applied Mixed Models in Medicine

Brown Helen Dawes

A mixed model allows the incorporation of both fixed and random variables within a statistical analysis. This enables efficient inferences and more information to be gained from the data. The application of mixed models is an increasingly popular way of analysing medical data, particularly in the pharmaceutical industry. There have been many recent advances in mixed modelling, particularly regarding the software and applications. This new edition of a groundbreaking text discusses the latest developments, from updated SAS techniques to the increasingly wide range of applications. Presents an overview of the theory and applications of mixed models in medical research, including the latest developments and new sections on bioequivalence, cluster randomised trials and missing data. Easily accessible to practitioners in any area where mixed models are used, including medical statisticians and economists. Includes numerous examples using real data from medical and health research, and epidemiology, illustrated with SAS code and output. Features new version of SAS, including the procedure PROC GLIMMIX and an introduction to other available software. Supported by a website featuring computer code, data sets, and further material, available at: http://www.chs.med.ed.ac.uk/phs/mixed/. This much-anticipated second edition is ideal for applied statisticians working in medical research and the pharmaceutical industry, as well as teachers and students of statistics courses in mixed models. The text will also be of great value to a broad range of scientists, particularly those working the medical and pharmaceutical areas.

Statistics and the Evaluation of Evidence for Forensic Scientists

Franco Taroni

The first edition of Statistics and the Evaluation of Evidence for Forensic Scientists established itself as a highly regarded authority on this area. Fully revised and updated, the second edition provides significant new material on areas of current interest including: Glass Interpretation Fibres Interpretation Bayes’ Nets The title presents comprehensive coverage of the statistical evaluation of forensic evidence. It is written with the assumption of a modest mathematical background and is illustrated throughout with up-to-date examples from a forensic science background. The clarity of exposition makes this book ideal for all forensic scientists, lawyers and other professionals in related fields interested in the quantitative assessment and evaluation of evidence. 'There can be no doubt that the appreciation of some evidence in a court of law has been greatly enhanced by the sound use of statistical ideas and one can be confident that the next decade will see further developments, during which time this book will admirably serve those who have cause to use statistics in forensic science.' D.V. Lindley

Estimation in Surveys with Nonresponse

Carl-Erik Särndal

Around the world a multitude of surveys are conducted every day, on a variety of subjects, and consequently surveys have become an accepted part of modern life. However, in recent years survey estimates have been increasingly affected by rising trends in nonresponse, with loss of accuracy as an undesirable result. Whilst it is possible to reduce nonresponse to some degree, it cannot be completely eliminated. Estimation techniques that account systematically for nonresponse and at the same time succeed in delivering acceptable accuracy are much needed. Estimation in Surveys with Nonresponse provides an overview of these techniques, presenting the view of nonresponse as a normal (albeit undesirable) feature of a sample survey, one whose potentially harmful effects are to be minimised. Builds in the nonresponse feature of survey data collection as an integral part of the theory, both for point estimation and for variance estimation. Promotes weighting through calibration as a new and powerful technique for surveys with nonresponse. Highlights the analysis of nonresponse bias in estimates and methods to minimize this bias. Includes computational tools to help identify the best variables for calibration. Discusses the use of imputation as a complement to weighting by calibration. Contains guidelines for dealing with frame imperfections and coverage errors. Features worked examples throughout the text, using real data. The accessible style of Estimation in Surveys with Nonresponse will make this an invaluable tool for survey methodologists in national statistics agencies and private survey agencies. Researchers, teachers, and students of statistics, social sciences and economics will benefit from the clear presentation and numerous examples.

A Matrix Handbook for Statisticians

George A. F. Seber

A comprehensive, must-have handbook of matrix methods with a unique emphasis on statistical applications This timely book, A Matrix Handbook for Statisticians, provides a comprehensive, encyclopedic treatment of matrices as they relate to both statistical concepts and methodologies. Written by an experienced authority on matrices and statistical theory, this handbook is organized by topic rather than mathematical developments and includes numerous references to both the theory behind the methods and the applications of the methods. A uniform approach is applied to each chapter, which contains four parts: a definition followed by a list of results; a short list of references to related topics in the book; one or more references to proofs; and references to applications. The use of extensive cross-referencing to topics within the book and external referencing to proofs allows for definitions to be located easily as well as interrelationships among subject areas to be recognized. A Matrix Handbook for Statisticians addresses the need for matrix theory topics to be presented together in one book and features a collection of topics not found elsewhere under one cover. These topics include: Complex matrices A wide range of special matrices and their properties Special products and operators, such as the Kronecker product Partitioned and patterned matrices Matrix analysis and approximation Matrix optimization Majorization Random vectors and matrices Inequalities, such as probabilistic inequalities Additional topics, such as rank, eigenvalues, determinants, norms, generalized inverses, linear and quadratic equations, differentiation, and Jacobians, are also included. The book assumes a fundamental knowledge of vectors and matrices, maintains a reasonable level of abstraction when appropriate, and provides a comprehensive compendium of linear algebra results with use or potential use in statistics. A Matrix Handbook for Statisticians is an essential, one-of-a-kind book for graduate-level courses in advanced statistical studies including linear and nonlinear models, multivariate analysis, and statistical computing. It also serves as an excellent self-study guide for statistical researchers.

Partial Differential Equations and the Finite Element Method

Группа авторов

A systematic introduction to partial differential equations and modern finite element methods for their efficient numerical solution Partial Differential Equations and the Finite Element Method provides a much-needed, clear, and systematic introduction to modern theory of partial differential equations (PDEs) and finite element methods (FEM). Both nodal and hierachic concepts of the FEM are examined. Reflecting the growing complexity and multiscale nature of current engineering and scientific problems, the author emphasizes higher-order finite element methods such as the spectral or hp-FEM. A solid introduction to the theory of PDEs and FEM contained in Chapters 1-4 serves as the core and foundation of the publication. Chapter 5 is devoted to modern higher-order methods for the numerical solution of ordinary differential equations (ODEs) that arise in the semidiscretization of time-dependent PDEs by the Method of Lines (MOL). Chapter 6 discusses fourth-order PDEs rooted in the bending of elastic beams and plates and approximates their solution by means of higher-order Hermite and Argyris elements. Finally, Chapter 7 introduces the reader to various PDEs governing computational electromagnetics and describes their finite element approximation, including modern higher-order edge elements for Maxwell's equations. The understanding of many theoretical and practical aspects of both PDEs and FEM requires a solid knowledge of linear algebra and elementary functional analysis, such as functions and linear operators in the Lebesgue, Hilbert, and Sobolev spaces. These topics are discussed with the help of many illustrative examples in Appendix A, which is provided as a service for those readers who need to gain the necessary background or require a refresher tutorial. Appendix B presents several finite element computations rooted in practical engineering problems and demonstrates the benefits of using higher-order FEM. Numerous finite element algorithms are written out in detail alongside implementation discussions. Exercises, including many that involve programming the FEM, are designed to assist the reader in solving typical problems in engineering and science. Specifically designed as a coursebook, this student-tested publication is geared to upper-level undergraduates and graduate students in all disciplines of computational engineeringand science. It is also a practical problem-solving reference for researchers, engineers, and physicists.

Optimization Methods for Logical Inference

Vijay Chandru

Merging logic and mathematics in deductive inference-an innovative, cutting-edge approach. Optimization methods for logical inference? Absolutely, say Vijay Chandru and John Hooker, two major contributors to this rapidly expanding field. And even though «solving logical inference problems with optimization methods may seem a bit like eating sauerkraut with chopsticks. . . it is the mathematical structure of a problem that determines whether an optimization model can help solve it, not the context in which the problem occurs.» Presenting powerful, proven optimization techniques for logic inference problems, Chandru and Hooker show how optimization models can be used not only to solve problems in artificial intelligence and mathematical programming, but also have tremendous application in complex systems in general. They survey most of the recent research from the past decade in logic/optimization interfaces, incorporate some of their own results, and emphasize the types of logic most receptive to optimization methods-propositional logic, first order predicate logic, probabilistic and related logics, logics that combine evidence such as Dempster-Shafer theory, rule systems with confidence factors, and constraint logic programming systems. Requiring no background in logic and clearly explaining all topics from the ground up, Optimization Methods for Logical Inference is an invaluable guide for scientists and students in diverse fields, including operations research, computer science, artificial intelligence, decision support systems, and engineering.

Logic-Based Methods for Optimization

Группа авторов

A pioneering look at the fundamental role of logic in optimization and constraint satisfaction While recent efforts to combine optimization and constraint satisfaction have received considerable attention, little has been said about using logic in optimization as the key to unifying the two fields. Logic-Based Methods for Optimization develops for the first time a comprehensive conceptual framework for integrating optimization and constraint satisfaction, then goes a step further and shows how extending logical inference to optimization allows for more powerful as well as flexible modeling and solution techniques. Designed to be easily accessible to industry professionals and academics in both operations research and artificial intelligence, the book provides a wealth of examples as well as elegant techniques and modeling frameworks ready for implementation. Timely, original, and thought-provoking, Logic-Based Methods for Optimization: * Demonstrates the advantages of combining the techniques in problem solving * Offers tutorials in constraint satisfaction/constraint programming and logical inference * Clearly explains such concepts as relaxation, cutting planes, nonserial dynamic programming, and Bender's decomposition * Reviews the necessary technologies for software developers seeking to combine the two techniques * Features extensive references to important computational studies * And much more