This newly updated edition of the benchmark guide to computer-assisted clinical trials provides a comprehensive primer for prospective managers. It covers every critical issue of the design and conduct of clinical trials, including study design, organization, regulatory agency liaison, data collection and analysis, as well as recruitment, software, monitoring, and reporting. Keeping the same user-friendly format as the original, this Second Edition features new examples and the latest developments in regulatory guidelines, such as e-submission procedures and computerized direct data acquisition. The new edition also reflects the increasing globalization of clinical trial activities, and includes new information about international standards and procedures, including the Common Technical Document and CDISC standards. This step-by-step guide is supported by handy checklists and extracts from submitted protocols. Experienced author and consultant Phillip Good incorporateshumorous yet instructive anecdotes to illustrate common pitfalls. Based on the proven industrial formula of planning, implementing, and finally performing essential checks, the book's three sections-"Plan," «Do,» and «Check»-includethe following material: * Should the trials be conducted? * Put it in the computer and keep it there * Staffing for success * Designing trials and determining sample size * Budgeting * Recruiting and retaining patients and physicians * Data management * Monitoring the trials * Data analysis * After action review * Exception handling Executive and managerial professionals involved in the design and analysis of clinical experiments, along with clinical research associates, biostatisticians, and students in public health will find A Manager's Guide an indispensable resource. Praise for the First Edition: «. . . readable, informative and at times witty . . . never stops being concise and well written . . . a book worth a read . . .» -Statistics in Medicine «The book is very prescriptive and full of lists and tables with which to guide managers in making effective decisions in using computer-assisted clinical trials in pharmaceutical studies.» -Technometrics «This book is must-have reading for anyone in the business . . .» -Clinical Chemistry
Incorporates the many tools needed for modeling and pricing in finance and insurance Introductory Stochastic Analysis for Finance and Insurance introduces readers to the topics needed to master and use basic stochastic analysis techniques for mathematical finance. The author presents the theories of stochastic processes and stochastic calculus and provides the necessary tools for modeling and pricing in finance and insurance. Practical in focus, the book's emphasis is on application, intuition, and computation, rather than theory. Consequently, the text is of interest to graduate students, researchers, and practitioners interested in these areas. While the text is self-contained, an introductory course in probability theory is beneficial to prospective readers. This book evolved from the author's experience as an instructor and has been thoroughly classroom-tested. Following an introduction, the author sets forth the fundamental information and tools needed by researchers and practitioners working in the financial and insurance industries: * Overview of Probability Theory * Discrete-Time stochastic processes * Continuous-time stochastic processes * Stochastic calculus: basic topics The final two chapters, Stochastic Calculus: Advanced Topics and Applications in Insurance, are devoted to more advanced topics. Readers learn the Feynman-Kac formula, the Girsanov's theorem, and complex barrier hitting times distributions. Finally, readers discover how stochastic analysis and principles are applied in practice through two insurance examples: valuation of equity-linked annuities under a stochastic interest rate environment and calculation of reserves for universal life insurance. Throughout the text, figures and tables are used to help simplify complex theory and pro-cesses. An extensive bibliography opens up additional avenues of research to specialized topics. Ideal for upper-level undergraduate and graduate students, this text is recommended for one-semester courses in stochastic finance and calculus. It is also recommended as a study guide for professionals taking Causality Actuarial Society (CAS) and Society of Actuaries (SOA) actuarial examinations.
A complete introduction to discriminant analysis–extensively revised, expanded, and updated This Second Edition of the classic book, Applied Discriminant Analysis, reflects and references current usage with its new title, Applied MANOVA and Discriminant Analysis. Thoroughly updated and revised, this book continues to be essential for any researcher or student needing to learn to speak, read, and write about discriminant analysis as well as develop a philosophy of empirical research and data analysis. Its thorough introduction to the application of discriminant analysis is unparalleled. Offering the most up-to-date computer applications, references, terms, and real-life research examples, the Second Edition also includes new discussions of MANOVA, descriptive discriminant analysis, and predictive discriminant analysis. Newer SAS macros are included, and graphical software with data sets and programs are provided on the book's related Web site. The book features: Detailed discussions of multivariate analysis of variance and covariance An increased number of chapter exercises along with selected answers Analyses of data obtained via a repeated measures design A new chapter on analyses related to predictive discriminant analysis Basic SPSS(r) and SAS(r) computer syntax and output integrated throughout the book Applied MANOVA and Discriminant Analysis enables the reader to become aware of various types of research questions using MANOVA and discriminant analysis; to learn the meaning of this field's concepts and terms; and to be able to design a study that uses discriminant analysis through topics such as one-factor MANOVA/DDA, assessing and describing MANOVA effects, and deleting and ordering variables.
Theory of Preliminary Test and Stein-Type Estimation with Applications provides a com-prehensive account of the theory and methods of estimation in a variety of standard models used in applied statistical inference. It is an in-depth introduction to the estimation theory for graduate students, practitioners, and researchers in various fields, such as statistics, engineering, social sciences, and medical sciences. Coverage of the material is designed as a first step in improving the estimates before applying full Bayesian methodology, while problems at the end of each chapter enlarge the scope of the applications. This book contains clear and detailed coverage of basic terminology related to various topics, including: * Simple linear model; ANOVA; parallelism model; multiple regression model with non-stochastic and stochastic constraints; regression with autocorrelated errors; ridge regression; and multivariate and discrete data models * Normal, non-normal, and nonparametric theory of estimation * Bayes and empirical Bayes methods * R-estimation and U-statistics * Confidence set estimation
Tools to improve decision making in an imperfect world This publication provides readers with a thorough understanding of Bayesian analysis that is grounded in the theory of inference and optimal decision making. Contemporary Bayesian Econometrics and Statistics provides readers with state-of-the-art simulation methods and models that are used to solve complex real-world problems. Armed with a strong foundation in both theory and practical problem-solving tools, readers discover how to optimize decision making when faced with problems that involve limited or imperfect data. The book begins by examining the theoretical and mathematical foundations of Bayesian statistics to help readers understand how and why it is used in problem solving. The author then describes how modern simulation methods make Bayesian approaches practical using widely available mathematical applications software. In addition, the author details how models can be applied to specific problems, including: * Linear models and policy choices * Modeling with latent variables and missing data * Time series models and prediction * Comparison and evaluation of models The publication has been developed and fine- tuned through a decade of classroom experience, and readers will find the author's approach very engaging and accessible. There are nearly 200 examples and exercises to help readers see how effective use of Bayesian statistics enables them to make optimal decisions. MATLAB? and R computer programs are integrated throughout the book. An accompanying Web site provides readers with computer code for many examples and datasets. This publication is tailored for research professionals who use econometrics and similar statistical methods in their work. With its emphasis on practical problem solving and extensive use of examples and exercises, this is also an excellent textbook for graduate-level students in a broad range of fields, including economics, statistics, the social sciences, business, and public policy.
A fascinating investigation into the foundations of statistical inference This publication examines the distinct philosophical foundations of different statistical modes of parametric inference. Unlike many other texts that focus on methodology and applications, this book focuses on a rather unique combination of theoretical and foundational aspects that underlie the field of statistical inference. Readers gain a deeper understanding of the evolution and underlying logic of each mode as well as each mode's strengths and weaknesses. The book begins with fascinating highlights from the history of statistical inference. Readers are given historical examples of statistical reasoning used to address practical problems that arose throughout the centuries. Next, the book goes on to scrutinize four major modes of statistical inference: * Frequentist * Likelihood * Fiducial * Bayesian The author provides readers with specific examples and counterexamples of situations and datasets where the modes yield both similar and dissimilar results, including a violation of the likelihood principle in which Bayesian and likelihood methods differ from frequentist methods. Each example is followed by a detailed discussion of why the results may have varied from one mode to another, helping the reader to gain a greater understanding of each mode and how it works. Moreover, the author provides considerable mathematical detail on certain points to highlight key aspects of theoretical development. The author's writing style and use of examples make the text clear and engaging. This book is fundamental reading for graduate-level students in statistics as well as anyone with an interest in the foundations of statistics and the principles underlying statistical inference, including students in mathematics and the philosophy of science. Readers with a background in theoretical statistics will find the text both accessible and absorbing.
A mathematical and intuitive approach to probability, statistics, and stochastic processes This textbook provides a unique, balanced approach to probability, statistics, and stochastic processes. Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area. This text combines a rigorous, calculus-based development of theory with a more intuitive approach that appeals to readers' sense of reason and logic, an approach developed through the author's many years of classroom experience. The text begins with three chapters that develop probability theory and introduce the axioms of probability, random variables, and joint distributions. The next two chapters introduce limit theorems and simulation. Also included is a chapter on statistical inference with a section on Bayesian statistics, which is an important, though often neglected, topic for undergraduate-level texts. Markov chains in discrete and continuous time are also discussed within the book. More than 400 examples are interspersed throughout the text to help illustrate concepts and theory and to assist the reader in developing an intuitive sense of the subject. Readers will find many of the examples to be both entertaining and thought provoking. This is also true for the carefully selected problems that appear at the end of each chapter. This book is an excellent text for upper-level undergraduate courses. While many texts treat probability theory and statistical inference or probability theory and stochastic processes, this text enables students to become proficient in all three of these essential topics. For students in science and engineering who may take only one course in probability theory, mastering all three areas will better prepare them to collect, analyze, and characterize data in their chosen fields.
A multidisciplinary approach that emphasizes learning by analyzing real-world data sets This book is the result of the authors' hands-on classroom experience and is tailored to reflect how students best learn to analyze linear relationships. The text begins with the introduction of four simple examples of actual data sets. These examples are developed and analyzed throughout the text, and more complicated examples of data sets are introduced along the way. Taking a multidisciplinary approach, the book traces the conclusion of the analyses of data sets taken from geology, biology, economics, psychology, education, sociology, and environmental science. As students learn to analyze the data sets, they master increasingly sophisticated linear modeling techniques, including: * Simple linear models * Multivariate models * Model building * Analysis of variance (ANOVA) * Analysis of covariance (ANCOVA) * Logistic regression * Total least squares The basics of statistical analysis are developed and emphasized, particularly in testing the assumptions and drawing inferences from linear models. Exercises are included at the end of each chapter to test students' skills before moving on to more advanced techniques and models. These exercises are marked to indicate whether calculus, linear algebra, or computer skills are needed. Unlike other texts in the field, the mathematics underlying the models is carefully explained and accessible to students who may not have any background in calculus or linear algebra. Most chapters include an optional final section on linear algebra for students interested in developing a deeper understanding. The many data sets that appear in the text are available on the book's Web site. The MINITAB(r) software program is used to illustrate many of the examples. For students unfamiliar with MINITAB(r), an appendix introduces the key features needed to study linear models. With its multidisciplinary approach and use of real-world data sets that bring the subject alive, this is an excellent introduction to linear models for students in any of the natural or social sciences.
A unique approach illustrating discrete distribution theory through combinatorial methods This book provides a unique approach by presenting combinatorial methods in tandem with discrete distribution theory. This method, particular to discreteness, allows readers to gain a deeper understanding of theory by using applications to solve problems. The author makes extensive use of the reduction approach to conditional distributions of independent random occupancy numbers, and provides excellent studies of occupancy and sequential occupancy distributions, convolutions of truncated discrete distributions, and compound and mixture distributions. Combinatorial Methods in Discrete Distributions begins with a brief presentation of set theory followed by basic counting principles. Fundamental principles of combinatorics, finite differences, and discrete probability are included to give readers the necessary foundation to the topics presented in the text. A thorough examination of the field is provided and features: Stirling numbers and generalized factorial coefficients Occupancy and sequential occupancy distributions n-fold convolutions of truncated distributions Compound and mixture distributions Thoroughly worked examples aid readers in understanding complex theory and discovering how theory can be applied to solve practical problems. An appendix with hints and answers to the exercises helps readers work through the more complex sections. Reference notes are provided at the end of each chapter, and an extensive bibliography offers readers a resource for additional information on specialized topics.
A multi-discipline, hands-on guide to microarray analysis of biological processes Analyzing Microarray Gene Expression Data provides a comprehensive review of available methodologies for the analysis of data derived from the latest DNA microarray technologies. Designed for biostatisticians entering the field of microarray analysis as well as biologists seeking to more effectively analyze their own experimental data, the text features a unique interdisciplinary approach and a combined academic and practical perspective that offers readers the most complete and applied coverage of the subject matter to date. Following a basic overview of the biological and technical principles behind microarray experimentation, the text provides a look at some of the most effective tools and procedures for achieving optimum reliability and reproducibility of research results, including: An in-depth account of the detection of genes that are differentially expressed across a number of classes of tissues Extensive coverage of both cluster analysis and discriminant analysis of microarray data and the growing applications of both methodologies A model-based approach to cluster analysis, with emphasis on the use of the EMMIX-GENE procedure for the clustering of tissue samples The latest data cleaning and normalization procedures The uses of microarray expression data for providing important prognostic information on the outcome of disease