Группа авторов

Список книг автора Группа авторов


    Discriminant Analysis and Statistical Pattern Recognition

    Группа авторов

    The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. «For both applied and theoretical statisticians as well as investigators working in the many areas in which relevant use can be made of discriminant techniques, this monograph provides a modern, comprehensive, and systematic account of discriminant analysis, with the focus on the more recent advances in the field.» –SciTech Book News «. . . a very useful source of information for any researcher working in discriminant analysis and pattern recognition.» –Computational Statistics Discriminant Analysis and Statistical Pattern Recognition provides a systematic account of the subject. While the focus is on practical considerations, both theoretical and practical issues are explored. Among the advances covered are regularized discriminant analysis and bootstrap-based assessment of the performance of a sample-based discriminant rule, and extensions of discriminant analysis motivated by problems in statistical image analysis. The accompanying bibliography contains over 1,200 references.

    Random Graphs for Statistical Pattern Recognition

    Группа авторов

    A timely convergence of two widely used disciplines Random Graphs for Statistical Pattern Recognition is the first book to address the topic of random graphs as it applies to statistical pattern recognition. Both topics are of vital interest to researchers in various mathematical and statistical fields and have never before been treated together in one book. The use of data random graphs in pattern recognition in clustering and classification is discussed, and the applications for both disciplines are enhanced with new tools for the statistical pattern recognition community. New and interesting applications for random graph users are also introduced. This important addition to statistical literature features: Information that previously has been available only through scattered journal articles Practical tools and techniques for a wide range of real-world applications New perspectives on the relationship between pattern recognition and computational geometry Numerous experimental problems to encourage practical applications With its comprehensive coverage of two timely fields, enhanced with many references and real-world examples, Random Graphs for Statistical Pattern Recognition is a valuable resource for industry professionals and students alike.

    Advanced Calculus with Applications in Statistics

    Группа авторов

    Designed to help motivate the learning of advanced calculus by demonstrating its relevance in the field of statistics, this successful text features detailed coverage of optimization techniques and their applications in statistics while introducing the reader to approximation theory. The Second Edition provides substantial new coverage of the material, including three new chapters and a large appendix that contains solutions to almost all of the exercises in the book. Applications of some of these methods in statistics are discusses.

    Semiparametric Regression for the Social Sciences

    Группа авторов

    An introductory guide to smoothing techniques, semiparametric estimators, and their related methods, this book describes the methodology via a selection of carefully explained examples and data sets. It also demonstrates the potential of these techniques using detailed empirical examples drawn from the social and political sciences. Each chapter includes exercises and examples and there is a supplementary website containing all the datasets used, as well as computer code, allowing readers to replicate every analysis reported in the book. Includes software for implementing the methods in S-Plus and R.

    Cross-over Trials in Clinical Research

    Группа авторов

    Cross-over trials are an important class of design used in the pharmaceutical industry and medical research, and their use continues to grow. Cross-over Trials in Clinical Research, Second Edition has been fully updated to include the latest methodology used in the design and analysis of cross-over trials. It includes more background material, greater coverage of important statistical techniques, including Bayesian methods, and discussion of analysis using a number of statistical software packages. * Comprehensive coverage of the design and analysis of cross-over trials. * Each technique is carefully explained and the mathematics is kept to a minimum. * Features many real and original examples, taken from the author's vast experience. * Includes discussion of analysis using SAS, S-Plus and, GenStat, StatXact and Excel. * Written in a style suitable for statisticians and physicians alike. * Computer programs to accompany the examples in the book can be downloaded from the Web Primarily aimed at statisticians and researchers working in the pharmaceutical industry, the book will also appeal to physicians involved in clinical research and students of medical statistics.

    Meta-Analysis of Controlled Clinical Trials

    Группа авторов

    Over the last twenty years there has been a dramatic upsurge in the application of meta-analysis to medical research. This has mainly been due to greater emphasis on evidence-based medicine and the need for reliable summaries of the vast and expanding volume of clinical research. At the same time there have been great strides in the development and refinement of the associated statistical methodology. This book describes the planning, conduct and reporting of a meta-analysis as applied to a series of randomized controlled clinical trials. * The various approaches are presented within a general unified framework. * Meta-analysis techniques are described in detail, from their theoretical development through to practical implementation. * Each topic discussed is supported by detailed worked examples. * A comparison of fixed and random effects approaches is included, as well as a discussion of Bayesian methods and cumulative meta-analysis. * Fully documented programs using standard statistical procedures in SAS are available on the Web. Ideally suited for practising statisticians and statistically-minded medical professionals, the book will also be of use to graduate students of medical statistics. The book is a self-contained and comprehensive account of the subject and an essential purchase for anyone involved in clinical trials.

    Understanding the Mathematics of Personal Finance

    Группа авторов

    A user-friendly presentation of the essential concepts and tools for calculating real costs and profits in personal finance Understanding the Mathematics of Personal Finance explains how mathematics, a simple calculator, and basic computer spreadsheets can be used to break down and understand even the most complex loan structures. In an easy-to-follow style, the book clearly explains the workings of basic financial calculations, captures the concepts behind loans and interest in a step-by-step manner, and details how these steps can be implemented for practical purposes. Rather than simply providing investment and borrowing strategies, the author successfully equips readers with the skills needed to make accurate and effective decisions in all aspects of personal finance ventures, including mortgages, annuities, life insurance, and credit card debt. The book begins with a primer on mathematics, covering the basics of arithmetic operations and notations, and proceeds to explore the concepts of interest, simple interest, and compound interest. Subsequent chapters illustrate the application of these concepts to common types of personal finance exchanges, including: Loan amortization and savings Mortgages, reverse mortgages, and viatical settlements Prepayment penalties Credit cards The book provides readers with the tools needed to calculate real costs and profits using various financial instruments. Mathematically inclined readers will enjoy the inclusion of mathematical derivations, but these sections are visually distinct from the text and can be skipped without the loss of content or complete understanding of the material. In addition, references to online calculators and instructions for building the calculations involved in a spreadsheet are provided. Furthermore, a related Web site features additional problem sets, the spreadsheet calculators that are referenced and used throughout the book, and links to various other financial calculators. Understanding the Mathematics of Personal Finance is an excellent book for finance courses at the undergraduate level. It is also an essential reference for individuals who are interested in learning how to make effective financial decisions in their everyday lives.

    Applied Econometrics Using the SAS System

    Группа авторов

    The first cutting-edge guide to using the SAS® system for the analysis of econometric data Applied Econometrics Using the SAS® System is the first book of its kind to treat the analysis of basic econometric data using SAS®, one of the most commonly used software tools among today's statisticians in business and industry. This book thoroughly examines econometric methods and discusses how data collected in economic studies can easily be analyzed using the SAS® system. In addition to addressing the computational aspects of econometric data analysis, the author provides a statistical foundation by introducing the underlying theory behind each method before delving into the related SAS® routines. The book begins with a basic introduction to econometrics and the relationship between classical regression analysis models and econometric models. Subsequent chapters balance essential concepts with SAS® tools and cover key topics such as: Regression analysis using Proc IML and Proc Reg Hypothesis testing Instrumental variables analysis, with a discussion of measurement errors, the assumptions incorporated into the analysis, and specification tests Heteroscedasticity, including GLS and FGLS estimation, group-wise heteroscedasticity, and GARCH models Panel data analysis Discrete choice models, along with coverage of binary choice models and Poisson regression Duration analysis models Assuming only a working knowledge of SAS®, this book is a one-stop reference for using the software to analyze econometric data. Additional features include complete SAS® code, Proc IML routines plus a tutorial on Proc IML, and an appendix with additional programs and data sets. Applied Econometrics Using the SAS® System serves as a relevant and valuable reference for practitioners in the fields of business, economics, and finance. In addition, most students of econometrics are taught using GAUSS and STATA, yet SAS® is the standard in the working world; therefore, this book is an ideal supplement for upper-undergraduate and graduate courses in statistics, economics, and other social sciences since it prepares readers for real-world careers.

    Statistical Factor Analysis and Related Methods

    Группа авторов

    Statistical Factor Analysis and Related Methods Theory and Applications In bridging the gap between the mathematical and statistical theory of factor analysis, this new work represents the first unified treatment of the theory and practice of factor analysis and latent variable models. It focuses on such areas as: * The classical principal components model and sample-population inference * Several extensions and modifications of principal components, including Q and three-mode analysis and principal components in the complex domain * Maximum likelihood and weighted factor models, factor identification, factor rotation, and the estimation of factor scores * The use of factor models in conjunction with various types of data including time series, spatial data, rank orders, and nominal variable * Applications of factor models to the estimation of functional forms and to least squares of regression estimators

    Multiple Imputation for Nonresponse in Surveys

    Группа авторов

    Demonstrates how nonresponse in sample surveys and censuses can be handled by replacing each missing value with two or more multiple imputations. Clearly illustrates the advantages of modern computing to such handle surveys, and demonstrates the benefit of this statistical technique for researchers who must analyze them. Also presents the background for Bayesian and frequentist theory. After establishing that only standard complete-data methods are needed to analyze a multiply-imputed set, the text evaluates procedures in general circumstances, outlining specific procedures for creating imputations in both the ignorable and nonignorable cases. Examples and exercises reinforce ideas, and the interplay of Bayesian and frequentist ideas presents a unified picture of modern statistics.