Группа авторов

Список книг автора Группа авторов


    Probability and Statistics for Computer Science

    Группа авторов

    Comprehensive and thorough development of both probability and statistics for serious computer scientists; goal-oriented: «to present the mathematical analysis underlying probability results» Special emphases on simulation and discrete decision theory Mathematically-rich, but self-contained text, at a gentle pace Review of calculus and linear algebra in an appendix Mathematical interludes (in each chapter) which examine mathematical techniques in the context of probabilistic or statistical importance Numerous section exercises, summaries, historical notes, and Further Readings for reinforcement of content

    Image Processing and Jump Regression Analysis

    Группа авторов

    The first text to bridge the gap between image processing and jump regression analysis Recent statistical tools developed to estimate jump curves and surfaces have broad applications, specifically in the area of image processing. Often, significant differences in technical terminologies make communication between the disciplines of image processing and jump regression analysis difficult. In easy-to-understand language, Image Processing and Jump Regression Analysis builds a bridge between the worlds of computer graphics and statistics by addressing both the connections and the differences between these two disciplines. The author provides a systematic analysis of the methodology behind nonparametric jump regression analysis by outlining procedures that are easy to use, simple to compute, and have proven statistical theory behind them. Key topics include: Conventional smoothing procedures Estimation of jump regression curves Estimation of jump location curves of regression surfaces Jump-preserving surface reconstruction based on local smoothing Edge detection in image processing Edge-preserving image restoration With mathematical proofs kept to a minimum, this book is uniquely accessible to a broad readership. It may be used as a primary text in nonparametric regression analysis and image processing as well as a reference guide for academicians and industry professionals focused on image processing or curve/surface estimation.

    A User's Guide to Principal Components

    Группа авторов

    WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of A User’s Guide to Principal Components «The book is aptly and correctly named–A User’s Guide. It is the kind of book that a user at any level, novice or skilled practitioner, would want to have at hand for autotutorial, for refresher, or as a general-purpose guide through the maze of modern PCA.» –Technometrics «I recommend A User’s Guide to Principal Components to anyone who is running multivariate analyses, or who contemplates performing such analyses. Those who write their own software will find the book helpful in designing better programs. Those who use off-the-shelf software will find it invaluable in interpreting the results.» –Mathematical Geology

    Discriminant Analysis and Statistical Pattern Recognition

    Группа авторов

    The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. «For both applied and theoretical statisticians as well as investigators working in the many areas in which relevant use can be made of discriminant techniques, this monograph provides a modern, comprehensive, and systematic account of discriminant analysis, with the focus on the more recent advances in the field.» –SciTech Book News «. . . a very useful source of information for any researcher working in discriminant analysis and pattern recognition.» –Computational Statistics Discriminant Analysis and Statistical Pattern Recognition provides a systematic account of the subject. While the focus is on practical considerations, both theoretical and practical issues are explored. Among the advances covered are regularized discriminant analysis and bootstrap-based assessment of the performance of a sample-based discriminant rule, and extensions of discriminant analysis motivated by problems in statistical image analysis. The accompanying bibliography contains over 1,200 references.

    Random Graphs for Statistical Pattern Recognition

    Группа авторов

    A timely convergence of two widely used disciplines Random Graphs for Statistical Pattern Recognition is the first book to address the topic of random graphs as it applies to statistical pattern recognition. Both topics are of vital interest to researchers in various mathematical and statistical fields and have never before been treated together in one book. The use of data random graphs in pattern recognition in clustering and classification is discussed, and the applications for both disciplines are enhanced with new tools for the statistical pattern recognition community. New and interesting applications for random graph users are also introduced. This important addition to statistical literature features: Information that previously has been available only through scattered journal articles Practical tools and techniques for a wide range of real-world applications New perspectives on the relationship between pattern recognition and computational geometry Numerous experimental problems to encourage practical applications With its comprehensive coverage of two timely fields, enhanced with many references and real-world examples, Random Graphs for Statistical Pattern Recognition is a valuable resource for industry professionals and students alike.

    Advanced Calculus with Applications in Statistics

    Группа авторов

    Designed to help motivate the learning of advanced calculus by demonstrating its relevance in the field of statistics, this successful text features detailed coverage of optimization techniques and their applications in statistics while introducing the reader to approximation theory. The Second Edition provides substantial new coverage of the material, including three new chapters and a large appendix that contains solutions to almost all of the exercises in the book. Applications of some of these methods in statistics are discusses.

    Semiparametric Regression for the Social Sciences

    Группа авторов

    An introductory guide to smoothing techniques, semiparametric estimators, and their related methods, this book describes the methodology via a selection of carefully explained examples and data sets. It also demonstrates the potential of these techniques using detailed empirical examples drawn from the social and political sciences. Each chapter includes exercises and examples and there is a supplementary website containing all the datasets used, as well as computer code, allowing readers to replicate every analysis reported in the book. Includes software for implementing the methods in S-Plus and R.

    Cross-over Trials in Clinical Research

    Группа авторов

    Cross-over trials are an important class of design used in the pharmaceutical industry and medical research, and their use continues to grow. Cross-over Trials in Clinical Research, Second Edition has been fully updated to include the latest methodology used in the design and analysis of cross-over trials. It includes more background material, greater coverage of important statistical techniques, including Bayesian methods, and discussion of analysis using a number of statistical software packages. * Comprehensive coverage of the design and analysis of cross-over trials. * Each technique is carefully explained and the mathematics is kept to a minimum. * Features many real and original examples, taken from the author's vast experience. * Includes discussion of analysis using SAS, S-Plus and, GenStat, StatXact and Excel. * Written in a style suitable for statisticians and physicians alike. * Computer programs to accompany the examples in the book can be downloaded from the Web Primarily aimed at statisticians and researchers working in the pharmaceutical industry, the book will also appeal to physicians involved in clinical research and students of medical statistics.

    Meta-Analysis of Controlled Clinical Trials

    Группа авторов

    Over the last twenty years there has been a dramatic upsurge in the application of meta-analysis to medical research. This has mainly been due to greater emphasis on evidence-based medicine and the need for reliable summaries of the vast and expanding volume of clinical research. At the same time there have been great strides in the development and refinement of the associated statistical methodology. This book describes the planning, conduct and reporting of a meta-analysis as applied to a series of randomized controlled clinical trials. * The various approaches are presented within a general unified framework. * Meta-analysis techniques are described in detail, from their theoretical development through to practical implementation. * Each topic discussed is supported by detailed worked examples. * A comparison of fixed and random effects approaches is included, as well as a discussion of Bayesian methods and cumulative meta-analysis. * Fully documented programs using standard statistical procedures in SAS are available on the Web. Ideally suited for practising statisticians and statistically-minded medical professionals, the book will also be of use to graduate students of medical statistics. The book is a self-contained and comprehensive account of the subject and an essential purchase for anyone involved in clinical trials.

    Understanding the Mathematics of Personal Finance

    Группа авторов

    A user-friendly presentation of the essential concepts and tools for calculating real costs and profits in personal finance Understanding the Mathematics of Personal Finance explains how mathematics, a simple calculator, and basic computer spreadsheets can be used to break down and understand even the most complex loan structures. In an easy-to-follow style, the book clearly explains the workings of basic financial calculations, captures the concepts behind loans and interest in a step-by-step manner, and details how these steps can be implemented for practical purposes. Rather than simply providing investment and borrowing strategies, the author successfully equips readers with the skills needed to make accurate and effective decisions in all aspects of personal finance ventures, including mortgages, annuities, life insurance, and credit card debt. The book begins with a primer on mathematics, covering the basics of arithmetic operations and notations, and proceeds to explore the concepts of interest, simple interest, and compound interest. Subsequent chapters illustrate the application of these concepts to common types of personal finance exchanges, including: Loan amortization and savings Mortgages, reverse mortgages, and viatical settlements Prepayment penalties Credit cards The book provides readers with the tools needed to calculate real costs and profits using various financial instruments. Mathematically inclined readers will enjoy the inclusion of mathematical derivations, but these sections are visually distinct from the text and can be skipped without the loss of content or complete understanding of the material. In addition, references to online calculators and instructions for building the calculations involved in a spreadsheet are provided. Furthermore, a related Web site features additional problem sets, the spreadsheet calculators that are referenced and used throughout the book, and links to various other financial calculators. Understanding the Mathematics of Personal Finance is an excellent book for finance courses at the undergraduate level. It is also an essential reference for individuals who are interested in learning how to make effective financial decisions in their everyday lives.