Действуй, мозг! Квантовая модель разума. Роман Бабкин

Читать онлайн.
Название Действуй, мозг! Квантовая модель разума
Автор произведения Роман Бабкин
Жанр Философия
Серия
Издательство Философия
Год выпуска 0
isbn 9785005523877



Скачать книгу

описывал «действие воли» как самодостаточную категорию мозга. Третье, саморефлексирующее, измерение.

      Которое не сводится ни к автоматическим движениям тела (когда мы, например, касаясь огня, одёргиваем руку), ни к мыслям-чувствам (идентифицируем «огонь-жар», глядя на него и/или ощущая его непосредственно).

      Новизна Декартова рассуждения в том, что созерцание собственного мышления есть нечто независимое в человеческом мозге. У него свои законы, свои правила. И, между прочим, собственный локус. Орган, где телесно-механическое и душевно-мыслящее сходятся – шишковидная железа (эпифиз).11,37

      Это то, что отличает нас от прочих живых существ. Ибо жить без самосознания можно, но, сознавая себя, нельзя не быть человеком. Поэтому: «Я мыслю, значит, я [как человек – Р.Б.] существую».

      Как Декарт сумел додуматься до третьего измерения мозга? Почему он, а не, скажем, Андреас Везалий – блестящий врач, живший на сто лет раньше и своими анатомическими исследованиями во многом исправивший ошибки Галена?

      Догадка Рене Декарта – не чудо и не случайность. Это закономерный результат его профессиональной деятельности. До конца жизни он оставался превосходным математиком.

      Мнимые числа

      Прежде чем совершить прорыв в теории мозга, Декарт совершил революцию в математике. Суть переворота заключалась в переосмыслении понятия «число».

      По мнению сэра Майкла Атья, в истории математики такие учёные, как Ньютон и Лейбниц, знаменуют переход от алгебры к математическому анализу.29

      Не углубляясь в предпосылки данного перехода, заметим, что существенной его чертой было появление дифференциального исчисления и термина «функция».

      Думаю, сейчас все знают, что функция есть отношение двух величин (необязательно выраженных числом – существуют, например, векторные функции). Однако, чтобы прийти к современному пониманию числа и функции, человечество преодолело немалый путь.

      Со школы каждому знакома двухмерная система координат (ось абсцисс – x и ось ординат – y с их числовой разметкой), в которой исследуются различные функции (всякие эллипсы, параболы, гиперболы и пр.).

      Мало кто задумывался (я в школьные годы – точно нет), что графическое изображение функции есть удивительный пример человеческой фантазии, соединившей, казалось бы, мало сопоставимые вещи: геометрию и алгебру.

      В данном случае фантазия принадлежала Рене Декарту. Его трактат «Геометрия», увидевший свет в 1637 году (за семь лет до «Первоначал философии»), продемонстрировал новый универсальный подход к решению математических задач.

      А именно: любые объекты и их соотношения можно выразить через алгебраические уравнения. Декарт строил двухмерную систему координат (теперь говорят «декартовы координаты»), изображал два пересекающихся объекта (например, окружность и параболу), выражал каждый объект через уравнение, объединял получившиеся уравнения в систему и решал её. Полученные корни являлись