Small-Angle Scattering. Ian W. Hamley

Читать онлайн.
Название Small-Angle Scattering
Автор произведения Ian W. Hamley
Жанр Техническая литература
Серия
Издательство Техническая литература
Год выпуска 0
isbn 9781119768340



Скачать книгу

fluctuations of layers.

      (1.47)upper S Subscript k Baseline equals upper N Subscript k Baseline plus 2 exp left-parenthesis minus StartFraction q squared upper Delta squared Over 2 EndFraction right-parenthesis sigma-summation Underscript m equals 1 Overscript upper N Subscript k Baseline minus 1 Endscripts left-parenthesis upper N Subscript k Baseline minus m right-parenthesis cosine left-parenthesis italic m q d right-parenthesis

      In the second model, the paracrystalline model (this type of model is discussed further in Section 1.6.3), the position of an individual fluctuating layer in a paracrystal is determined solely by its nearest neighbours. Then [21, 22]

      (1.48)upper S Subscript k Baseline equals upper N Subscript k Baseline plus 2 sigma-summation Underscript m equals 1 Overscript upper N Subscript k Baseline minus 1 Endscripts left-parenthesis upper N Subscript k Baseline minus m right-parenthesis cosine left-parenthesis italic m q d right-parenthesis exp left-parenthesis minus StartFraction m squared q squared upper Delta squared Over 2 EndFraction right-parenthesis

      In a third alternative model, introduced by Caillé [23] and modified to allow for finite lamellar stacks [24, 25], the fluctuations are quantified in terms of the flexibility of the membranes:

      (1.49)upper S Subscript k Baseline equals upper N Subscript k Baseline plus 2 sigma-summation Underscript m equals 1 Overscript upper N Subscript k Baseline minus 1 Endscripts left-parenthesis upper N Subscript k Baseline minus m right-parenthesis cosine left-parenthesis italic m q d right-parenthesis exp left-bracket minus left-parenthesis StartFraction italic q d Over 2 pi EndFraction right-parenthesis squared eta gamma right-bracket left-parenthesis pi m right-parenthesis Superscript minus left-parenthesis italic q d slash 2 pi right-parenthesis squared eta

      Here γ is Euler's constant and

      (1.50)eta equals pi k Subscript upper B Baseline upper T slash 2 d squared left-parenthesis italic upper B upper K right-parenthesis Superscript 1 slash 2

      is the Caillé parameter, which depends on the bulk compression modulus B and the bending rigidity K of the layers.

      1.6.2 Periodic Structures and Bragg Reflections

      For ordered systems such as colloid crystals, liquid crystals or block copolymer mesophases, the structure factor will comprise a series of Bragg reflections (or pseudo‐Bragg reflections, strictly, for layered structures). The amplitude structure factor for a hkl reflection (where h, k and l are Miller indices) of a lattice is given by [12]

Schematic illustration of the representative one-, two-, and three-dimensional structures, with lowest indexed diffraction planes indicated. For the lamellar structure, three-dimensional Miller indices have been employed while for the hexagonal structure two-dimensional indices are used. Schematic illustration of the compilation of SAXS profiles measured for PEO-PBO diblock copolymer melts. The x-axis uses a q-scale normalized to q*, the position of the first order peak.

      Source: From Ref. [28].

      The layer spacing d for a lamellar phase is given by

      Here ql is the position of the lth order Bragg peak.

      For a two‐dimensional hexagonal structure [26, 29]:

      where qhk is the position of the Bragg peak with indices hk and a is the lattice constant.