Small-Angle Scattering. Ian W. Hamley

Читать онлайн.
Название Small-Angle Scattering
Автор произведения Ian W. Hamley
Жанр Техническая литература
Серия
Издательство Техническая литература
Год выпуска 0
isbn 9781119768340



Скачать книгу

a particle (maximum distance from the geometric centre).

      In terms of the isotropically averaged autocorrelation function γ(r) this can be written as

      (1.16)upper I left-parenthesis q right-parenthesis equals 4 pi integral Subscript 0 Superscript upper D Subscript max Baseline Baseline gamma squared left-parenthesis r right-parenthesis r squared StartFraction sine left-parenthesis italic q r right-parenthesis Over italic q r EndFraction italic d r

      Or in terms of the Debye correlation function Γ(r):

      (1.17)upper I left-parenthesis q right-parenthesis equals 4 pi integral Subscript 0 Superscript upper D Subscript max Baseline Baseline upper Gamma left-parenthesis r right-parenthesis r squared StartFraction sine left-parenthesis italic q r right-parenthesis Over italic q r EndFraction italic d r

      This then leads to the expression

      (1.19)p left-parenthesis r right-parenthesis equals StartFraction 1 Over 2 pi squared EndFraction integral Subscript 0 Superscript q Subscript max Baseline Baseline upper I left-parenthesis q right-parenthesis italic q r sine left-parenthesis italic q r right-parenthesis italic d q

Graph depicts the sketches of pair distance distribution functions for the colour-coded particle shapes shown with a Dmax = 10 nm.

      Source: Adapted from Ref. [9].

      Many SAS data analysis software packages such as ATSAS and others (Table 2.2) and software on synchrotron beamlines is able to compute PDDFs from measured data. Methods to obtain PDDFs by indirect Fourier transform methods are discussed further in Section 4.6.1.

      The Guinier equation is used to obtain the radius of gyration from a simple analysis of the scattering at very low q (from the first part of the measured SAS intensity profile). The Guinier approximation can be obtained from Eq. (1.18), substituting the expansion [6, 7, 11]:

      (1.21)StartFraction sine left-parenthesis italic q r right-parenthesis Over italic q r EndFraction equals 1 minus StartFraction left-parenthesis italic q r right-parenthesis squared Over 3 factorial EndFraction plus StartFraction left-parenthesis italic q r right-parenthesis Superscript 4 Baseline Over 5 factorial EndFraction minus ellipsis

      gives at sufficiently low q (such that the expansion can be truncated at the second term)

      (1.22)upper I left-parenthesis q right-parenthesis equals 4 pi integral Subscript 0 Superscript upper D Subscript italic max Baseline Baseline p left-parenthesis r right-parenthesis left-parenthesis 1 minus StartFraction left-parenthesis italic q r right-parenthesis squared Over 3 factorial EndFraction right-parenthesis italic d r

      Using the series expansion e Superscript x Baseline equals 1 plus x plus StartFraction x squared Over 2 factorial EndFraction plus ellipsis with x equals q squared upper R Subscript g Superscript 2, and truncating at the second term (valid if q is small), this can be rewritten as an exponential

      For a homogeneous sphere of radius R, the radius of gyration is given by upper R Subscript g Baseline equals upper R StartRoot 3 slash 5 EndRoot [6, 11] whereas for a homogeneous infinite cylinder of radius R it is given by upper R Subscript g Baseline equals upper R slash StartRoot 2 EndRoot and for a thin disc of thickness T, upper R Subscript g Baseline equals upper T slash StartRoot 12 EndRoot [6, 7, 10, 13]. For an ellipse