Методы и средства обеспечения безопасности полета. В. Б. Живетин

Читать онлайн.
Название Методы и средства обеспечения безопасности полета
Автор произведения В. Б. Живетин
Жанр Математика
Серия Риски и безопасность человеческой деятельности
Издательство Математика
Год выпуска 2007
isbn 978-5-98664-055-6, 978-5-903140-39-8



Скачать книгу

связан с введением дополнительного дифференциального уравнения, что создает условия для новых погрешностей модели. При этом происходит замена чистого запаздывания на приближенное инерционное запаздывание. С целью такой замены в (1.6) введем обозначение s = – τ, тогда получим

      δn(s + τ) = δp(s)[1 + П*(s)].          (1.10)

      Предположив, что функция δn(s + τ) дифференцируемая, разложим ее в ряд Тейлора по степеням τ. Следующее важное допущение: функция δn(s) линейная относительно s, т. е.

      δ*ss = δ*sss = … = 0.

      Данное предположение нуждается в уточнении.

      С учетом принятого допущения, имеет место следующая аппроксимация:

      Дадим геометрическую интерпретацию записанного соотношения (1.11). На рис. 1.16 приведены известные понятия производной от функции δn(s). В точке s = – τ имеет место δn(s) = 0 от кредита, выданного на время τ в момент времени – τ = s. Мы вычисляем δn(t), т. е. δn в момент возврата кредита. В силу сказанного, из (1.12) следует

      Рис. 1.16

      так как δn(s) = 0. Здесь используется основное допущение, принятое выше, о дифференцируемости функции δn(t). В рамках данной модели мы находимся в дискретном пространстве. Переход к непрерывному множеству – очередное допущение, которое необходимо анализировать с позиции погрешностей итогового результата, например, при параметрической идентификации.

      Подставив (1.11) в (1.10), заменяя s на t в силу произвольности s, получим

      В общем случае нелинейная зависимость δn(s+τ) заменена линейной δn(s), а чистое запаздывание τ, свойственное системе, заменено на инерционное τk, свойственное динамической системе. Однако инерционное и чистое запаздывания не равны. При этом имеет место приближенное равенство

      τ = 3τk,

      которое следует из условия вхождения решения уравнения (1.13) в 5 %-ю полосу, т. е. совпадения.

      В (1.13) выразим δp через δe, что позволит свести исходную систему к системе из двух уравнений с двумя неизвестными, т. е. замкнутую систему.

      Поток δr(t), согласно (1.5), состоит из ряда слагаемых, которые представим в следующей форме:

      δзп = γ1δe; δн = γ2δe; δос = γ3δe; δпр = γ4δe,

      где γ1, γ2, γ3, γ4 определяют доли, которые составляют от δe потоки δs, δТ, δса, δo соответственно.

      Следовательно δr(t) = γδe, где γ = γ1 + γ2 + γ3 + γ4. При этом часть δe, равная δp = (1 – γ)δe, идет на компенсацию депозита, т. е. δg(t) и создание услуг, которые еще не оплачены, т. е. в некотором смысле на кредит, выдаваемый пассажирам под проценты П*.

      При этом неравенство δp > 0 будет характеризовать функционально-экономическую устойчивость системы, поскольку величина δр характеризует объем средств, вкладываемых в организацию и проведение пассажироперевозок. Из соотношения δp = (1 – γ)δe > 0 следует