Различные книги в жанре Математика

Online Panel Research. A Data Quality Perspective

Jelke Bethlehem

Provides new insights into the accuracy and value of online panels for completing surveys Over the last decade, there has been a major global shift in survey and market research towards data collection, using samples selected from online panels. Yet despite their widespread use, remarkably little is known about the quality of the resulting data. This edited volume is one of the first attempts to carefully examine the quality of the survey data being generated by online samples. It describes some of the best empirically-based research on what has become a very important yet controversial method of collecting data. Online Panel Research presents 19 chapters of previously unpublished work addressing a wide range of topics, including coverage bias, nonresponse, measurement error, adjustment techniques, the relationship between nonresponse and measurement error, impact of smartphone adoption on data collection, Internet rating panels, and operational issues. The datasets used to prepare the analyses reported in the chapters are available on the accompanying website: www.wiley.com/go/online_panel Covers controversial topics such as professional respondents, speeders, and respondent validation. Addresses cutting-edge topics such as the challenge of smartphone survey completion, software to manage online panels, and Internet and mobile ratings panels. Discusses and provides examples of comparison studies between online panels and other surveys or benchmarks. Describes adjustment techniques to improve sample representativeness. Addresses coverage, nonresponse, attrition, and the relationship between nonresponse and measurement error with examples using data from the United States and Europe. Addresses practical questions such as motivations for joining an online panel and best practices for managing communications with panelists. Presents a meta-analysis of determinants of response quantity. Features contributions from 50 international authors with a wide variety of backgrounds and expertise. This book will be an invaluable resource for opinion and market researchers, academic researchers relying on web-based data collection, governmental researchers, statisticians, psychologists, sociologists, and other research practitioners.

Tipping Points. Modelling Social Problems and Health

Brian Straughan

This book focuses on the modelling of contemporary health and social problems, especially those considered a major burden to communities, governments and taxpayers, such as smoking, alcoholism, drug use, and heart disease. Based on a series of papers presented at a recent conference hosted by the Leverhulme-funded Tipping Points project at the University of Durham, this book illustrates a broad range of modelling approaches. Such a diverse collection demonstrates that an interdisciplinary approach is essential to modelling tipping points in health and social problems, and the assessment of associated risk and resilience.

Implementation of Large-Scale Education Assessments

Petra Lietz

Presents a comprehensive treatment of issues related to the inception, design, implementation and reporting of large-scale education assessments. In recent years many countries have decided to become involved in international educational assessments to allow them to ascertain the strengths and weaknesses of their student populations. Assessments such as the OECD's Programme for International Student Assessment (PISA), the IEA's Trends in Mathematics and Science Study (TIMSS) and Progress in International Reading Literacy (PIRLS) have provided opportunities for comparison between students of different countries on a common international scale. This book is designed to give researchers, policy makers and practitioners a well-grounded knowledge in the design, implementation, analysis and reporting of international assessments. Readers will be able to gain a more detailed insight into the scientific principles employed in such studies allowing them to make better use of the results. The book will also give readers an understanding of the resources needed to undertake and improve the design of educational assessments in their own countries and regions. Implementation of Large-Scale Education Assessments: Brings together the editors’ extensive experience in creating, designing, implementing, analysing and reporting results on a wide range of assessments. Emphasizes methods for implementing international studies of student achievement and obtaining highquality data from cognitive tests and contextual questionnaires. Discusses the methods of sampling, weighting, and variance estimation that are commonly encountered in international large-scale assessments. Provides direction and stimulus for improving global educational assessment and student learning Is written by experts in the field, with an international perspective. Survey researchers, market researchers and practitioners engaged in comparative projects will all benefit from the unparalleled breadth of knowledge and experience in large-scale educational assessments gathered in this one volume.

Applications of Regression Models in Epidemiology

Roberto Rivera

A one-stop guide for public health students and practitioners learning the applications of classical regression models in epidemiology This book is written for public health professionals and students interested in applying regression models in the field of epidemiology. The academic material is usually covered in public health courses including (i) Applied Regression Analysis, (ii) Advanced Epidemiology, and (iii) Statistical Computing. The book is composed of 13 chapters, including an introduction chapter that covers basic concepts of statistics and probability. Among the topics covered are linear regression model, polynomial regression model, weighted least squares, methods for selecting the best regression equation, and generalized linear models and their applications to different epidemiological study designs. An example is provided in each chapter that applies the theoretical aspects presented in that chapter. In addition, exercises are included and the final chapter is devoted to the solutions of these academic exercises with answers in all of the major statistical software packages, including STATA, SAS, SPSS, and R. It is assumed that readers of this book have a basic course in biostatistics, epidemiology, and introductory calculus. The book will be of interest to anyone looking to understand the statistical fundamentals to support quantitative research in public health. In addition, this book: • Is based on the authors’ course notes from 20 years teaching regression modeling in public health courses • Provides exercises at the end of each chapter • Contains a solutions chapter with answers in STATA, SAS, SPSS, and R • Provides real-world public health applications of the theoretical aspects contained in the chapters Applications of Regression Models in Epidemiology is a reference for graduate students in public health and public health practitioners. ERICK SUÁREZ is a Professor of the Department of Biostatistics and Epidemiology at the University of Puerto Rico School of Public Health. He received a Ph.D. degree in Medical Statistics from the London School of Hygiene and Tropical Medicine. He has 29 years of experience teaching biostatistics. CYNTHIA M. PÉREZ is a Professor of the Department of Biostatistics and Epidemiology at the University of Puerto Rico School of Public Health. She received an M.S. degree in Statistics and a Ph.D. degree in Epidemiology from Purdue University. She has 22 years of experience teaching epidemiology and biostatistics. ROBERTO RIVERA is an Associate Professor at the College of Business at the University of Puerto Rico at Mayaguez. He received a Ph.D. degree in Statistics from the University of California in Santa Barbara. He has more than five years of experience teaching statistics courses at the undergraduate and graduate levels. MELISSA N. MARTÍNEZ is an Account Supervisor at Havas Media International. She holds an MPH in Biostatistics from the University of Puerto Rico and an MSBA from the National University in San Diego, California. For the past seven years, she has been performing analyses for the biomedical research and media advertising fields.

Basic Stochastic Processes

Jacques Janssen

This book presents basic stochastic processes, stochastic calculus including Lévy processes on one hand, and Markov and Semi Markov models on the other. From the financial point of view, essential concepts such as the Black and Scholes model, VaR indicators, actuarial evaluation, market values, fair pricing play a central role and will be presented. The authors also present basic concepts so that this series is relatively self-contained for the main audience formed by actuaries and particularly with ERM (enterprise risk management) certificates, insurance risk managers, students in Master in mathematics or economics and people involved in Solvency II for insurance companies and in Basel II and III for banks.

Systems Dependability Assessment. Benefits of Petri Net Models

Nicolae Brinzei

Petri Nets were defined for the study of discrete events systems and later extended for many purposes including dependability assessment. In our knowledge, no book deals specifically with the use of different type of PN to dependability. We propose in addition to bring a focus on the adequacy of Petri net types to the study of various problems related to dependability such as risk analysis and probabilistic assessment. In the first part, the basic models of PN and some useful extensions are briefly recalled. In the second part, the PN are used as a formal model to describe the evolution process of critical system in the frame of an ontological approach. The third part focuses on the stochastic Petri Nets (SPN) and their use in dependability assessment. Different formal models of SPN are formally presented (semantics, evolution rules…) and their equivalence with the corresponding class of Markov processes to get an analytical assessment of dependability. Simplification methods are proposed in order to reduce the size of analytical model and to make it more calculable. The introduction of some concepts specific to high level PN allows too the consideration of complex systems. Few applications in the field of the instrumentation and control (l&C) systems, safety integrated systems (SIS) emphasize the benefits of SPN for dependability assessment.

An Introduction to Statistical Analysis in Research. With Applications in the Biological and Life Sciences

Kanya Godde

Provides well-organized coverage of statistical analysis and applications in biology, kinesiology, and physical anthropology with comprehensive insights into the techniques and interpretations of R, SPSS®, Excel®, and Numbers® output An Introduction to Statistical Analysis in Research: With Applications in the Biological and Life Sciences develops a conceptual foundation in statistical analysis while providing readers with opportunities to practice these skills via research-based data sets in biology, kinesiology, and physical anthropology. Readers are provided with a detailed introduction and orientation to statistical analysis as well as practical examples to ensure a thorough understanding of the concepts and methodology. In addition, the book addresses not just the statistical concepts researchers should be familiar with, but also demonstrates their relevance to real-world research questions and how to perform them using easily available software packages including R, SPSS®, Excel®, and Numbers®. Specific emphasis is on the practical application of statistics in the biological and life sciences, while enhancing reader skills in identifying the research questions and testable hypotheses, determining the appropriate experimental methodology and statistical analyses, processing data, and reporting the research outcomes. In addition, this book: • Aims to develop readers’ skills including how to report research outcomes, determine the appropriate experimental methodology and statistical analysis, and identify the needed research questions and testable hypotheses • Includes pedagogical elements throughout that enhance the overall learning experience including case studies and tutorials, all in an effort to gain full comprehension of designing an experiment, considering biases and uncontrolled variables, analyzing data, and applying the appropriate statistical application with valid justification • Fills the gap between theoretically driven, mathematically heavy texts and introductory, step-by-step type books while preparing readers with the programming skills needed to carry out basic statistical tests, build support figures, and interpret the results • Provides a companion website that features related R, SPSS, Excel, and Numbers data sets, sample PowerPoint® lecture slides, end of the chapter review questions, software video tutorials that highlight basic statistical concepts, and a student workbook and instructor manual An Introduction to Statistical Analysis in Research: With Applications in the Biological and Life Sciences is an ideal textbook for upper-undergraduate and graduate-level courses in research methods, biostatistics, statistics, biology, kinesiology, sports science and medicine, health and physical education, medicine, and nutrition. The book is also appropriate as a reference for researchers and professionals in the fields of anthropology, sports research, sports science, and physical education. KATHLEEN F. WEAVER, PhD, is Associate Dean of Learning, Innovation, and Teaching and Professor in the Department of Biology at the University of La Verne. The author of numerous journal articles, she received her PhD in Ecology and Evolutionary Biology from the University of Colorado. VANESSA C. MORALES, BS, is Assistant Director of the Academic Success Center at the University of La Verne. SARAH L. DUNN, PhD, is Associate Professor in the Department of Kinesiology at the University of La Verne and is Director of Research and Sponsored Programs. She has authored numerous journal articles and received her PhD in Health and Exercise Science from the University of New South Wales. KANYA GODDE, PhD, is Assistant Professor in the Department of Anthropology and is Director/Chair of Institutional Review Board at the University of La Verne. The author of numerous j

Statistical Models and Methods for Reliability and Survival Analysis

Nikolaos Limnios

Statistical Models and Methods for Reliability and Survival Analysis brings together contributions by specialists in statistical theory as they discuss their applications providing up-to-date developments in methods used in survival analysis, statistical goodness of fit, stochastic processes for system reliability, amongst others. Many of these are related to the work of Professor M. Nikulin in statistics over the past 30 years. The authors gather together various contributions with a broad array of techniques and results, divided into three parts – Statistical Models and Methods, Statistical Models and Methods in Survival Analysis, and Reliability and Maintenance. The book is intended for researchers interested in statistical methodology and models useful in survival analysis, system reliability and statistical testing for censored and non-censored data.

Data Mining for Business Analytics. Concepts, Techniques, and Applications in R

Galit Shmueli

Data Mining for Business Analytics: Concepts, Techniques, and Applications in R presents an applied approach to data mining concepts and methods, using R software for illustration Readers will learn how to implement a variety of popular data mining algorithms in R (a free and open-source software) to tackle business problems and opportunities. This is the fifth version of this successful text, and the first using R. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: • Two new co-authors, Inbal Yahav and Casey Lichtendahl, who bring both expertise teaching business analytics courses using R, and data mining consulting experience in business and government • Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students • More than a dozen case studies demonstrating applications for the data mining techniques described • End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented • A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in R is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “ This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 publications including books. Peter C. Bruce is President and Founder of the Institute for Statistics Education at Statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective (Wiley) and co-author of Practical Statistics for Data Scientists: 50 Essential Concepts (O’Reilly). Inbal Yahav, PhD, is Professor at the Graduate School of Business Administration at Bar-Ilan University, Israel. She teaches courses in social network analysis, advanced research methods, and software quality assurance. Dr. Yahav received her PhD in Operations Research and Data Mining from the University of Maryland, College Park. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American St

Semi-Markov Migration Models for Credit Risk

Jacques Janssen

Credit risk is one of the most important contemporary problems for banks and insurance companies. Indeed, for banks, more than forty percent of the equities are necessary to cover this risk. Though this problem is studied by large rating agencies with substantial economic, social and financial tools, building stochastic models is nevertheless necessary to complete this descriptive orientation. This book presents a complete presentation of such a category of models using homogeneous and non-homogeneous semi-Markov processes developed by the authors in several recent papers. This approach provides a good method of evaluating the default risk and the classical VaR indicators used for Solvency II and Basel III governance rules. This book is the first to present a complete semi-Markov treatment of credit risk while also insisting on the practical use of the models presented here, including numerical aspects, so that this book is not only useful for scientific research but also to managers working in this field for banks, insurance companies, pension funds and other financial institutions.