Прочая образовательная литература

Различные книги в жанре Прочая образовательная литература

Side Reactions in Organic Synthesis II. Aromatic Substitutions

Florencio Dörwald Zaragoza

This new textbook is the successor to the volume «Side Reactions in Organic Synthesis – A Guide to Successful Synthesis Design» (2004), written by the same author. Whereas the predecessor mainly covered the limitations of aliphatic substitution reactions, this new volume focuses on the most important aromatic substitution reactions, both electrophilic and nucleophilic, such as amination reactions, halogenation reactions, Friedel-Crafts acylations, or transition metal-catalyzed arylation reactions. Each chapter not only describes the scope of a specific reaction type, but also reveals what cannot be achieved with this reaction, i.e. what type of side reactions are to be expected with certain starting materials or electrophiles/nucleophiles. With its unique approach, this is a must-have book for graduate students in organic chemistry and synthetic chemists both in academia and industry!

Conductive Atomic Force Microscopy. Applications in Nanomaterials

Mario Lanza

The first book to summarize the applications of CAFM as the most important method in the study of electronic properties of materials and devices at the nanoscale. To provide a global perspective, the chapters are written by leading researchers and application scientists from all over the world and cover novel strategies, configurations and setups where new information will be obtained with the help of CAFM. With its substantial content and logical structure, this is a valuable reference for researchers working with CAFM or planning to use it in their own fields of research.

Introduction to Tissue Engineering. Applications and Challenges

Ravi Birla

A comprehensive reference and teaching aid on tissue engineering—covering everything from the basics of regenerative medicine to more advanced and forward thinking topics such as the artificial liver, bladder, and trachea Regenerative medicine/tissue engineering is the process of replacing or regenerating human cells, tissues, or organs to restore or establish normal function. It is an incredibly progressive field of medicine that may, in the near future, help with the shortage of life-saving organs available through donation for transplantation. Introduction to Tissue Engineering: Applications and Challenges makes tissue engineering more accessible to undergraduate and graduate students alike. It provides a systematic and logical eight-step process for tissue fabrication. Specific chapters have been dedicated to provide in-depth principles for many of the supporting and enabling technologies during the tissue fabrication process and include biomaterial development and synthesis, bioreactor design, and tissue vascularization. The tissue fabrication process is further illustrated with specific examples for liver, bladder, and trachea. Section-coverage includes an overall introduction of tissue engineering; enabling and supporting technologies; clinical applications; and case studies and future challenges. Introduction to Tissue Engineering: Presents medical applications of stem cells in tissue engineering Deals with the effects of chemical stimulation (growth factors and hormones) Covers current disease pathologies and treatment options (pacemakers, prosthesis) Explains bioengineering, design and fabrication, and critical challenges during tissue fabrication Offers PowerPoint slides for instructors Features case studies and a section on future directions and challenges As pioneering individuals look ahead to the possibility of generating entire organ systems, students may turn to this text for a comprehensive understanding and preparation for the future of regenerative medicine.

Electromagnetic Compatibility. Analysis and Case Studies in Transportation

Donald Baker G.

Explains and resolves the electromagnetic compatibility challenges faced by engineers in transportation and communications This book is a mathematically-rich extension of courses required to maintain the Federal Communications Commission (FCC), the Canadian Standards Association (CSA), and the European Union certifications. The text provides an in-depth study of the electromagnetic compatibility (EMC) issues related to specific topics in transportation and communications, including Light Rail Transit, shadow effects, and radio dead spots, through the analysis of real-world case studies in the United States and Europe. The author provides Cartesian, cylindrical, and spherical solutions that can be applied to Maxwell's and Wave Equations. The book covers topics such as SCADA Systems, shielding, and complexities of radio frequencies and their effect on communication houses. The author also provides information for alternative industries to apply the solutions from the case studies and background content to their own professions. Presents a series of over twenty real-world case studies related to EMC in transportation and communications Covers power line radiation, shadow effects on subway cars, train control systems, and edge distortions Includes the OATS testing method and Department of Transportation (DOT) test Provides access to a companion website housing power point slides and additional appendices Electromagnetic Compatibility: Analysis and Case Studies in Transportation is a reference for practicing engineers involved in transportation and communications, as well as post-graduate engineering students studying transportation and communications in engineering.

Fluid-Structure Interaction. An Introduction to Finite Element Coupling

Jean-François Sigrist

Fluid-Structure Interaction: An Introduction to Finite Element Coupling fulfils the need for an introductive approach to the general concepts of Finite and Boundary Element Methods for FSI, from the mathematical formulation to the physical interpretation of numerical simulations. Based on the author’s experience in developing numerical codes for industrial applications in shipbuilding and in teaching FSI to both practicing engineers and within academia, it provides a comprehensive and self–contained guide that is geared toward both students and practitioners of mechanical engineering. Composed of six chapters, Fluid–Structure Interaction: An Introduction to Finite Element Coupling progresses logically from formulations and applications involving structure and fluid dynamics, fluid and structure interactions and opens to reduced order-modelling for vibro-acoustic coupling. The author describes simple yet fundamental illustrative examples in detail, using analytical and/or semi–analytical formulation & designed both to illustrate each numerical method and also to highlight a physical aspect of FSI. All proposed examples are simple enough to be computed by the reader using standard computational tools such as MATLAB, making the book a unique tool for self–learning and understanding the basics of the techniques for FSI, or can serve as verification and validation test cases of industrial FEM/BEM codes rendering the book valuable for code verification and validation purposes.

Crystallography and Surface Structure. An Introduction for Surface Scientists and Nanoscientists

Klaus Hermann

A valuable learning tool as well as a reference, this book provides students and researchers in surface science and nanoscience with the theoretical crystallographic foundations, which are necessary to understand local structure and symmetry of bulk crystals, including ideal and real single crystal surfaces. The author deals with the subject at an introductory level, providing numerous graphic examples to illustrate the mathematical formalism. The book brings together and logically connects many seemingly disparate structural issues and notations used frequently by surface scientists and nanoscientists. Numerous exercises of varying difficulty, ranging from simple questions to small research projects, are included to stimulate discussions about the different subjects. From the contents: Bulk Crystals, Three-Dimensional Lattices – Crystal Layers, Two-Dimensional Lattices, Symmetry – Ideal Single Crystal Surfaces – Real Crystal Surfaces – Adsorbate layers – Interference Lattices – Chiral Surfaces – Experimental Analysis of Real Crystal Surfaces – Nanoparticles and Crystallites – Quasicrystals – Nanotubes

Solid State Physics. An Introduction

Philip Hofmann

A must-have textbook for any undergraduate studying solid state physics. This successful brief course in solid state physics is now in its second edition. The clear and concise introduction not only describes all the basic phenomena and concepts, but also such advanced issues as magnetism and superconductivity. Each section starts with a gentle introduction, covering basic principles, progressing to a more advanced level in order to present a comprehensive overview of the subject. The book is providing qualitative discussions that help undergraduates understand concepts even if they can?t follow all the mathematical detail. The revised edition has been carefully updated to present an up-to-date account of the essential topics and recent developments in this exciting field of physics. The coverage now includes ground-breaking materials with high relevance for applications in communication and energy, like graphene and topological insulators, as well as transparent conductors. The text assumes only basic mathematical knowledge on the part of the reader and includes more than 100 discussion questions and some 70 problems, with solutions free to lecturers from the Wiley-VCH website. The author's webpage provides Online Notes on x-ray scattering, elastic constants, the quantum Hall effect, tight binding model, atomic magnetism, and topological insulators. This new edition includes the following updates and new features: * Expanded coverage of mechanical properties of solids, including an improved discussion of the yield stress * Crystal structure, mechanical properties, and band structure of graphene * The coverage of electronic properties of metals is expanded by a section on the quantum hall effect including exercises. New topics include the tight-binding model and an expanded discussion on Bloch waves. * With respect to semiconductors, the discussion of solar cells has been extended and improved. * Revised coverage of magnetism, with additional material on atomic magnetism * More extensive treatment of finite solids and nanostructures, now including topological insulators * Recommendations for further reading have been updated and increased. * New exercises on Hall mobility, light penetrating metals, band structure

Gene Cloning and DNA Analysis. An Introduction

T. A. Brown

Known world-wide as the standard introductory text to this important and exciting area, the seventh edition of Gene Cloning and DNA Analysis addresses new and growing areas of research whilst retaining the philosophy of the previous editions. Assuming the reader has little prior knowledge of the subject, its importance, the principles of the techniques used and their applications are all carefully laid out, with over 250 clearly presented four-colour illustrations. In addition to a number of informative changes to the text throughout the book, the chapters on DNA sequencing and genome studies have been rewritten to reflect the continuing rapid developments in this area of DNA analysis: In depth description of the next generation sequencing methods and descriptions of their applications in studying genomes and transcriptomes New material on the use of ChiP-seq to locate protein-binding sites Extended coverage of the strategies used to assemble genome sequences Description of how the Neanderthal genome has been sequenced and what that sequence tells us about interbreeding between Neanderthals and Homo sapiens Gene Cloning and DNA Analysis remains an essential introductory text to a wide range of biological sciences students; including genetics and genomics, molecular biology, biochemistry, immunology and applied biology. It is also a perfect introductory text for any professional needing to learn the basics of the subject. All libraries in universities where medical, life and biological sciences are studied and taught should have copies available on their shelves.

Statistical Analysis of Geographical Data. An Introduction

Simon Dadson James

Statistics Analysis of Geographical Data: An Introduction provides a comprehensive and accessible introduction to the theory and practice of statistical analysis in geography. It covers a wide range of topics including graphical and numerical description of datasets, probability, calculation of confidence intervals, hypothesis testing, collection and analysis of data using analysis of variance and linear regression. Taking a clear and logical approach, this book examines real problems with real data from the geographical literature in order to illustrate the important role that statistics play in geographical investigations. Presented in a clear and accessible manner the book includes recent, relevant examples, designed to enhance the reader’s understanding.

Alternative Ecological Risk Assessment. An Innovative Approach to Understanding Ecological Assessments for Contaminated Sites

Lawrence Tannenbaum V.

In Alternative Ecological Risk Assessment the author, Lawrence V. Tannenbaum, provides a critical review of current practices in the ecological risk assessment field and proposes alternatives that are supported by established science and keen observation. It is hoped that this approach will pave the way to a greater understanding of what appropriate and useful ecological assessment for contaminated sites should entail. He demonstrates that in most cases current practices do not provide for an assessment of ecological risk, and moreover, that endeavoring to assess ecological risk is actually an unnecessary undertaking at conventional hazardous waste sites. (He states, for example, that the concept of scale is often ignored by practitioners, questions why animals like deer are routinely assessed at 5-acre sites, and challenges the ecotoxicology data currently used.) The book is aimed at students and professionals in the fields of environmental science, ecology, ecotoxicology, and health risk assessment.