Прочая образовательная литература

Различные книги в жанре Прочая образовательная литература

Amyloid Fibrils and Prefibrillar Aggregates. Molecular and Biological Properties

Daniel Otzen Erik

Summing up almost a decade of biomedical research, this topical and eagerly awaited handbook is the first reference on the topic to incorporate recent breakthroughs in amyloid research. The first part covers the structural biology of amyloid fibrils and pre-fibrillar assemblies, including a description of current models for amyloid formation. The second part looks at the diagnosis and biomedical study of amyloid in humans and in animal models, while the final section discusses pharmacological approaches to manipulating amyloid and also looks at its physiological roles in lower and higher organisms. For Biochemists, Molecular Biologists, Neurobiologists, Neurophysiologists and those working in the Pharmaceutical Industry.

Relative Fidelity Processing of Seismic Data. Methods and Applications

Xiwen Wang

This book presents a comprehensive overview of relative fidelity preservation processing methods and their applications within the oil and gas sector. Four key principles for wide-frequency relative fidelity preservation processing are illustrated throughout the text. Seismic broadband acquisition is the basis for relative fidelity preservation processing and the influence of seismic acquisition on data processing is also analyzed. The methods and principles of Kirchhoff integral migration, one-way wave equation migration and reverse time migration are also introduced and illustrated clearly. Current research of relative amplitude preservation migration algorithms is introduced, and the corresponding numerical results are also shown. RTM (reverse time migration) imaging methods based on GPU/CPU systems for complicated structures are represented. This includes GPU/CPU high performance calculations and its application to seismic exploration, two-way wave extrapolation operator and boundary conditions, imaging conditions and low frequency noise attenuation, and GPU/CPU system based RTM imaging algorithms. Migration velocity model building methods in depth domain for complicated structures are illustrated in this book. The research status and development of velocity model building are introduced. And the impacting factors are also discussed. Several different velocity model building methods are also represented and analyzed. The book also provides the reader with several case studies of field seismic data imaging in different kinds of basins to show the methods used in practice.

From ER to E.T.. How Electromagnetic Technologies Are Changing Our Lives

Rajeev Bansal

This book covers the study of electromagnetic wave theory and describes how electromagnetic technologies affect our daily lives. From ER to ET: How Electromagnetic Technologies Are Changing Our Lives explores electromagnetic wave theory including its founders, scientific underpinnings, ethical issues, and applications through history. Utilizing a format of short essays, this book explains in a balanced, and direct style how electromagnetic technologies are changing the world we live in and the future they may create for us. Quizzes at the end of each chapter provide the reader with a deeper understanding of the material. This book is a valuable resource for microwave engineers of varying levels of experience, and for instructors to motivate their students and add depth to their assignments. In addition, this book: Presents topics that investigate all aspects of electromagnetic technology throughout history Explores societal and global issues that relate to the field of electrical engineering (emphasized in current ABET accreditation criteria) Includes quizzes relevant to every essay and answers which explain technical perspectives Rajeev Bansal, PhD, is a professor of Electrical and Computer Engineering at the University of Connecticut. He is a member of IEEE and the Connecticut Academy of Science and Engineering. He is a Fellow of the Electromagnetics Academy. His editing credits include Fundamentals of Engineering Electromagnetics and Engineering Electromagnetics: Applications. Dr. Bansal contributes regular columns to IEEE Antennas and Propagation Magazine and IEEE Microwave Magazine.

The Physics of Theism. God, Physics, and the Philosophy of Science

Jeffrey Koperski

The Physics of Theism provides a timely, critical analysis of the ways in which physics intertwines with religion. Koperski brings clarity to a range of arguments including the fine-tuning argument, naturalism, the laws of nature, and the controversy over Intelligent Design. A single author text providing unprecedented scope and depth of analysis of key issues within the Philosophy of Religion and the Philosophy of Science Critically analyses the ways in which physics is brought into play in matters of religion Self-contained chapters allow readers to directly access specific areas of interest The area is one of considerable interest, and this book is a timely and well-conceived contribution to these debates Written by an accomplished scholar working in the philosophy of physics in a style that renders complex arguments accessible

Hydrogen Exchange Mass Spectrometry of Proteins. Fundamentals, Methods, and Applications

David Weis D.

Hydrogen exchange mass spectrometry is widely recognized for its ability to probe the structure and dynamics of proteins. The application of this technique is becoming widespread due to its versatility for providing structural information about challenging biological macromolecules such as antibodies, flexible proteins and glycoproteins. Although the technique has been around for 25 years, this is the first definitive book devoted entirely to the topic. Hydrogen Exchange Mass Spectrometry of Proteins: Fundamentals, Methods and Applications brings into one comprehensive volume the theory, instrumentation and applications of Hydrogen Exchange Mass Spectrometry (HX-MS) – a technique relevant to bioanalytical chemistry, protein science and pharmaceuticals. The book provides a solid foundation in the basics of the technique and data interpretation to inform readers of current research in the method, and provides illustrative examples of its use in bio- and pharmaceutical chemistry and biophysics In-depth chapters on the fundamental theory of hydrogen exchange, and tutorial chapters on measurement and data analysis provide the essential background for those ready to adopt HX-MS. Expert users may advance their current understanding through chapters on methods including membrane protein analysis, alternative proteases, millisecond hydrogen exchange, top-down mass spectrometry, histidine exchange and method validation. All readers can explore the diversity of HX-MS applications in areas such as ligand binding, membrane proteins, drug discovery, therapeutic protein formulation, biocomparability, and intrinsically disordered proteins.

Introduction to Experimental Infrared Spectroscopy. Fundamentals and Practical Methods

Mitsuo Tasumi

Infrared spectroscopy is generally understood to mean the science of spectra relating to infrared radiation, namely electromagnetic waves, in the wavelength region occurring intermediately between visible light and microwaves. Measurements of infrared spectra have been providing useful information, for a variety of scientific research and industrial studies, for over half a century; this is set to continue in the foreseeable future. Introduction to Experimental Infrared Spectroscopy is intended to be a handy guide for those who have no, or limited, experience in infrared spectroscopic measurements but are utilising infrared-related methods for their research or in practical applications. Written by leading researchers and experienced practitioners, this work consists of 22 chapters and presents the basic theory, methodology and practical measurement methods, including ATR, photoacoustic, IR imaging, NIR, 2D-COS, and VCD. The six Appendices will aid readers in understanding the concepts presented in the main text. Written in an easy-to-understand way this book is suitable for students, researchers and technicians working with infrared spectroscopy and related methods.

Cellulose and Cellulose Derivatives in the Food Industry. Fundamentals and Applications

Tanja Wuestenberg

Cellulose and its derivatives can be found in many forms in nature and is a valuable material for all manner of applications in industry. This book is authored by an expert with many years of experience as an application engineer at renowned cellulose processing companies in the food industry. All the conventional and latest knowledge available on cellulose and its derivatives is presented. The necessary details are elucidated from a theoretical and practical viewpoint, while retaining the focus on food applications. This book is an essential source of information and includes recommendations and instructions of a general nature to assist readers in the exploration of possible applications of cellulose and its derivatives, as well as providing food for thought for the generation of new ideas for product development. Topics include gelling and rheological properties, synergistic effects with other hydrocolloids, as well as nutritional and legal aspects. The resulting compilation covers all the information and advice needed for the successful development, implementation, and handling of cellulose-containing products.

Handbook of GC-MS. Fundamentals and Applications

Hans-Joachim Hübschmann

The only comprehensive reference on this popular and rapidly developing technique provides a detailed overview, ranging from fundamentals to applications, including a section on the evaluation of GC-MS analyses. As such, it covers all aspects, including the theory and principles, as well as a broad range of real-life examples taken from laboratories in environmental, food, pharmaceutical and clinical analysis. It also features a glossary of approximately 300 terms and a substance index that facilitates finding a specific application. For this new edition the work has been now extended to two volumes, reflecting the latest developments in the technique and related instrumentation, while also incorporating several new examples of applications in many fields. The first two editions were very well received, making this handbook a must-have in all analytical laboratories using GC-MS.

Inorganic Chemistry for Geochemistry and Environmental Sciences. Fundamentals and Applications

George W. Luther, III

Inorganic Chemistry for Geochemistry and Environmental Sciences: Fundamentals and Applications discusses the structure, bonding and reactivity of molecules and solids of environmental interest, bringing the reactivity of non-metals and metals to inorganic chemists, geochemists and environmental chemists from diverse fields. Understanding the principles of inorganic chemistry including chemical bonding, frontier molecular orbital theory, electron transfer processes, formation of (nano) particles, transition metal-ligand complexes, metal catalysis and more are essential to describe earth processes over time scales ranging from 1 nanosec to 1 Gigayr. Throughout the book, fundamental chemical principles are illustrated with relevant examples from geochemistry, environmental and marine chemistry, allowing students to better understand environmental and geochemical processes at the molecular level. Topics covered include: • Thermodynamics and kinetics of redox reactions • Atomic structure • Symmetry • Covalent bonding, and bonding in solids and nanoparticles • Frontier Molecular Orbital Theory • Acids and bases • Basics of transition metal chemistry including • Chemical reactivity of materials of geochemical and environmental interest Supplementary material is provided online, including PowerPoint slides, problem sets and solutions. Inorganic Chemistry for Geochemistry and Environmental Sciences is a rapid assimilation textbook for those studying and working in areas of geochemistry, inorganic chemistry and environmental chemistry, wishing to enhance their understanding of environmental processes from the molecular level to the global level.

Advances in Acoustic Microscopy and High Resolution Imaging. From Principles to Applications

Roman Maev Gr.

Novel physical solutions, including new results in the field of adaptive methods and inventive approaches to inverse problems, original concepts based on high harmonic imaging algorithms, intriguing vibro-acoustic imaging and vibro-modulation technique, etc. were successfully introduced and verified in numerous studies of industrial materials and biomaterials in the last few years. Together with the above mentioned traditional academic and practical avenues in ultrasonic imaging research, intriguing scientific discussions have recently surfaced and will hopefully continue to bear fruits in the future. The goal of this book is to provide an overview of the recent advances in high-resolution ultrasonic imaging techniques and their applications to biomaterials evaluation and industrial materials. The result is a unique collection of papers presenting novel results and techniques that were developed by leading research groups worldwide. This book offers a number of new results from well-known authors who are engaged in aspects of the development of novel physical principles, new methods, or implementation of modern technological solutions into current imaging devices and new applications of high-resolution imaging systems. The ultimate purpose of this book is to encourage more research and development in the field to realize the great potential of high resolution acoustic imaging and its various industrial and biomedical applications.