Computational Analysis and Deep Learning for Medical Care. Группа авторов

Читать онлайн.
Название Computational Analysis and Deep Learning for Medical Care
Автор произведения Группа авторов
Жанр Программы
Серия
Издательство Программы
Год выпуска 0
isbn 9781119785736



Скачать книгу

parameters of AlexNet.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 X X X X X X X X X X
1 X X X X X X X X X X
2 X X X X X X X X X X
3 X X X X X X X X X X
4 X X X X X X X X X X
5 X X X X X X X X X X

      First Layer: AlexNet accepts a 227 × 227 × 3 RGB image as input which is fed to the first convolutional layer with 96 kernels (feature maps or filters) of size 11 × 11 × 3 and a stride of 4 and the dimension of the output image is changed to 96 images of size 55 × 55. The next layer is max-pooling layer or sub-sampling layer which uses a window size of 3 × 3 and a stride of two and produces an output image of size 27 × 27 × 96.

      Second Layer: The second convolutional layer filters the 27 × 27 × 96 image with 256 kernels of size 5 × 5 and a stride of 1 pixel. Then, it is followed by max-pooling layer with filter size 3 × 3 and a stride of 2 and the output image is changed to 256 images of size 13 × 13.

      Third, Fourth, and Fifth Layers: The third, fourth, and fifth convolutional layers uses filter size of 3 × 3 and a stride of one. The third and fourth convolutional layer has 384 feature maps, and fifth layer uses 256 filters. These layers are followed by a maximum pooling layer with filter size 3 × 3, a stride of 2 and have 256 feature maps.

      Sixth Layer: The 6 × 6 × 256 image is flattened as a fully connected layer with 9,216 neurons (feature maps) of size 1 × 1.

      Seventh and Eighth Layers: The seventh and eighth layers are fully connected layers with 4,096 neurons.

      Output Layer: The activation used in the output layer is softmax and consists of 1,000 classes.

      1.2.3 ZFNet

      The architecture of ZFNet introduced by Zeiler [3] is same as that of the AlexNet, but convolutional layer uses reduced sized kernel 7 × 7 with stride 2. This reduction in the size will enable the network to obtain better hyper-parameters with less computational efficiency and helps to retain more features. The number of filters in the third, fourth and fifth convolutional layers are increased to 512, 1024, and 512. A new visualization technique, deconvolution (maps features to pixels), is used to analyze first and second layer’s feature map.

Sl. no. Layer Kernel size Stride Activation shape Weights Bias # Parameters Activation # Connections