Computational Analysis and Deep Learning for Medical Care. Группа авторов

Читать онлайн.
Название Computational Analysis and Deep Learning for Medical Care
Автор произведения Группа авторов
Жанр Программы
Серия
Издательство Программы
Год выпуска 0
isbn 9781119785736



Скачать книгу

size 5×5 with stride 1 in C1, the feature maps obtained is of size 14×14. Figure 1.1 shows the architecture of LeNet-5, and Table 1.1 shows the various parameter details of LeNet-5. Let Wc is the number of weights in the layer; Bc is the number of biases in the layer; Pc is the number of parameters in the layer; K is the size (width) of kernels in the layer; N is the number of kernels; C is the number of channels in the input image.

      (1.1)

      (1.2)

      In the first convolutional layer, number of learning parameters is (5×5 + 1) × 6 = 156 parameters; where 6 is the number of filters, 5 × 5 is the filter size, and bias is 1, and there are 28×28×156 = 122,304 connections. The number of feature map calculation is as follows:

      (1.3)

      (1.4)

      W = 32; H = 32; Fw = Fh = 5; P = 0, and the number of feature map is 28 × 28.

      First pooling layer: W = 28; H = 28; P = 0; S = 2

      (1.5)

Sl no. Layer Feature map Feature map size Kernel size Stride Activation Trainable parameters # Connections
1 Image 1 32 × 32 - - - - -
2 C1 6 28 × 28 5 × 5 1 tanh 156 122,304
3 S1 6 14 × 14 2 × 2 2 tanh 12 5,880
4 C2 16 10 × 10 5 × 5 1 tanh 1516 151,600
5 S2 16 5 × 5 2 × 2 2 tanh 32 2,000
6 Dense 120 1 × 1 5 × 5 1 tanh 48,120 48,120
7 Dense - 84 - - tanh 10,164 10,164
8 Dense - 10 - - softmax - -
60,000 (Total)

      (1.6)

      The number of feature map is 14×14 and the number of learning parameters is (coefficient + bias) × no. filters = (1+1) × 6 = 12 parameters and the number of connections = 30×14×14 = 5,880.

      1.2.2 AlexNet