Biofuel Cells. Группа авторов

Читать онлайн.
Название Biofuel Cells
Автор произведения Группа авторов
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119725053



Скачать книгу

human body contains or releases many forms of energy, such as chemical and physical energy which provide 100 W of power [18, 21]. These energy can be converted to electrical energy via BFCs. In the first attempt in this direction, an enzyme-based BFC was operated in a living system. Mano et al. implanted an EFC in a grape grain including abundant glucose content of >30 mM glucose at pH 5.4. The authors reported that the power density was found to be 2.4 μW mm−2 when the cathode fiber was near the skin of the grape. The EFC system was preserved 78% of initial power output at the first day with continuous operation [22]. The EFC studies were performed, which were implanted into different living plant, such as a cactus [23] and Carpobrotus acinaciformis [24–26]. Oxygen and glucose produced by photosynthesis were converted into renewable and sustainable electrical energy by sunlight. The next major improvement was animal experiments. For this purpose, first glucose-based EFC was implanted with surgical operation into a retroperitoneal space of freely moving rat in 2010. It was reported that a stable energy production of 2 μW was obtained in the extra-cellular fluid and no signs of inflammatory reaction were observed for the implant during 3 months [27]. In another study, a trehalose based EFC was implanted in a live cockroach [28]. Another important progress was the implantation of glucose-based EFC in a snail. The thin sheet EFC buckypaper electrodes made from an aggregate of carbon nanotubes or carbon nanotube are very popular recently due to its superior properties. They were placed into the hemolymph between the body wall and internal organs. In snail experiments conducted with these electrodes, open circuit potential (OCV), maximum current and generated power was reported as 0.53 V, 42.5 μA and 7.45 μW, respectively. That thanks to the ability of buckpaper electrodes, the EFC operation was reproducible even after a 2-week period and it was not affected by enzyme inactivation or biofouling in the living medium. In addition, reversible decay in the power generation had been interpreted as inadequate glucose regeneration in the buckypaper electrode surface because of slow diffusion in the hemolymph [29]. The biocatalytic electrodes implanted in a snail were presented in Figure 2.2. The same research group placed an EFC into the two living lobsters which were connected in a series, and achieved to activate a digital watch by the living battery. The highest OCV obtained from the implanted EFC system was reported as 1.2 V by the research group. In the same paper, the fluidic EFC including five cells, and designed to imitate circulation of human blood were used for activate pacemaker. The implanted EFC produced enough electrical energy for the pacamaker at least 5 h with this innovative attempt, but long-term stability was not studied for this prototype [30]. In another implanted EFC system which glucose was used as fuel, three electrified clams were connected in serial and parallel. While an OCV of 0.8 V, short-circuit current of 25 μA and power of 5.2 μW were calculated in the serial connection, OCV of 0.36 V, short-circuit current of 300 μA and power of 37 μW were reported in parallel connection. This study was showed the activating possibility of mini or micro devices using the energy generated in vivo medium [31].

      2.1.2 Wearable BFCs

      By considering the major drawbacks of implantable BFCs, in recent years there is a tendency for developing wearable devices which are miniaturized and integrated easily to human body without surgery. In addition, the difficulties in implantable EFCs applications have led researchers to wearable fuel cell technology and, consequently, to investigate physiological fluids as alternative to blood, for example urine, tears, sweat, saliva and transdermal fluid. These fluids are easily available and do not require blood draw or implantations for testing [37]. It can be thought as conventional batteries can be used for wearable electronics, however they are unsuitable for this application since they are rigid and toxic [38]. Although, EFCs are commonly used, MFCs have also been developed for wearable electronics. One of the drawback of an MFC is that cytotoxicity