Название | Biofuel Cells |
---|---|
Автор произведения | Группа авторов |
Жанр | Физика |
Серия | |
Издательство | Физика |
Год выпуска | 0 |
isbn | 9781119725053 |
146. Hickey, D.P., Reid, R.C., Milton, R.D., Minteer, S.D., A self-powered amperometric lactate biosensor based on lactate oxidase immobilized in dimethyl-ferrocene-modified LPEI. Biosens. Bioelectron., 77, 26–31, 2016.
147. Hickey, D.P., Ferrocene-Modified Linear Poly(ethylenimine) for Enzymatic Immobilization and Electron Mediation, in: Minteer, S.D. (Ed.), Enzyme Stabilization and Immobilization: Methods and Protocols, pp. 181–191, Springer, New York, 2017.
148. Escalona-Villalpando, R.A., Reid, R.C., Milton, R.D., Arriaga, L.G., et al., Improving the performance of lactate/oxygen biofuel cells using a microfluidic design. J. Power Sources, 342, 546–552, 2017.
149. Miyawaki, O., Wingard, L.B., Electrochemical and glucose oxidase coenzyme activity of flavin adenine dinucleotide covalently attached to glassy carbon at the adenine amino group. Biochim. Biophys. Acta (BBA)—General Subjects, 838, 60–68, 1985.
150. Guiseppi-Elie, A., Lei, C., Baughman, R.H., Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnol., 13, 559–564, 2002.
151. Ishida, K., Orihara, K., Muguruma, H., Iwasa, H., et al., Comparison of Direct and Mediated Electron Transfer in Electrodes with Novel Fungal Flavin Adenine Dinucleotide Glucose Dehydrogenase. Anal. Sci., 34, 783–787, 2018.
152. Lovley, D.R., Anaerobes into heavy-metal–dissimilatory metal reduction in anoxic environments. Trends Ecol. Evol., 8, 213–217, 1993.
153. Lovley, D.R., Extracellular electron transfer: wires, capacitors, iron lungs, and more. Geobiol., 6, 225–231, 2008.
154. Zacharoff, L., Chan, C.H., Bond, D.R., Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens. Bioelectrochem., 107, 7–13, 2016.
155. Morgado, L., Bruix, M., Pessanha, M., Londer, Y.Y., Salgueiro, C.A., Thermodynamic Characterization of a Triheme Cytochrome Family from Geobacter sulfurreducens Reveals Mechanistic and Functional Diversity. Biophys. J., l, 99, 293–301, 2010.
156. Liu, Y.M., Fredrickson, J.K., Zachara, J.M., Shi, L., Direct involvement of OmbB, OmaB, and OmcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA. Front. Microbiol., 6, 2015.
157. Vellingiri, A., Song, Y.E., Munussami, G., Kim, C., et al., Overexpression of c-type cytochrome, CymA in Shewanella oneidensis MR-1 for enhanced bioelectricity generation and cell growth in a microbial fuel cell. J. Chem. Technol. Biotechnol., 94, 2115–2122, 2019.
158. Alves, A.S., Costa, N.L., Tien, M., Louro, R.O., Paquete, C.M., Modulation of the reactivity of multiheme cytochromes by site-directed mutagenesis: moving towards the optimization of microbial electrochemical technologies. J. Biol. Inorg. Chem., 22, 87–97, 2017.
159. Alves, M.N., Neto, S.E., Alves, A.S., Fonseca, B.M., et al., Characterization of the periplasmic redox network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1. Front. Microbiol., 6, 2015.
160. Costa, N.L., Clarke, T.A., Philipp, L.A., Gescher, J., et al., Electron transfer process in microbial electrochemical technologies: The role of cell-surface exposed conductive proteins. Bioresour. Technol., 255, 308–317, 2018.
161. Xiao, K., Malvankar, N.S., Shu, C.J., Martz, E., et al., Low Energy Atomic Models Suggesting a Pilus Structure that could Account for Electrical Conductivity of Geobacter sulfurreducens Pili. Scientific Reports, 6, 2016.
162. Holmes, D.E., Dang, Y., Walker, D.J.F., Lovley, D.R., The electrically conductive pili of Geobacter species are a recently evolved feature for extracellular electron transfer. Microb. Genomics, 2, 2016.
163. Torres, C.I., Marcus, A.K., Lee, H.S., Parameswaran, P., et al., A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. Fems Microbiol. Rev., 34, 3–17, 2010.
164. Hagos, K., Liu, C., Lu, X.H., Effect of endogenous hydrogen utilization on improved methane production in an integrated microbial electrolysis cell and anaerobic digestion: Employing catalyzed stainless steel mesh cathode. Chin. J. Chem. Eng., 26, 574–582, 2018.
165. Milton, R.D., Giroud, F., Thumser, A.E., Minteer, S.D., Slade, R.C.T., Bilirubin oxidase bioelectrocatalytic cathodes: the impact of hydrogen peroxide. Chem. Comm., 50, 94–96, 2014.
166. Zebda, A., Renaud, L., Cretin, M., Innocent, C., et al., Membrane less microchannel glucose biofuel cell with improved electrical performances. Sens Actuators B-Chem., 149, 44–50, 2010.
167. Kim, H., Lee, I., Kwon, Y., Kim, B. C., et al., Immobilization of glucose oxidase into polyaniline nanofiber matrix for biofuel cell applications. Biosens. Bioelectron., 26, 3908–3913, 2011.
168. Ortiz-Ortega, E., Goulet, M.-A., Lee, J.W., Guerra-Balcázar, M., et al., A nanofluidic direct formic acid fuel cell with a combined flow-through and air-breathing electrode for high performance. Lab on a Chip, 14, 4596–4598, 2014.
169. Gellett, W., Schumacher, J., Kesmez, M., Le, D., Minteer, S.D., High Current Density Air-Breathing Laccase Biocathode. J. Electrochem. Soc., 157, B557, 2010.
170. Jayashree, R.S., Gancs, L., Choban, E.R., Primak, A., et al., Air-Breathing Laminar Flow-Based Microfluidic Fuel Cell. J. Amer. Chem. Soc., 127, 16758–16759, 2005.
171. Jiang, Y., Su, M., Zhang, Y., Zhan, G.Q., et al., Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. Int. J. Hydrogen Energy, 38, 3497–3502, 2013.
172. Siegert, M., Yates, M.D., Call, D.F., Zhu, X.P., et al., Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis. ACS Sustainable Chem. Eng., 2, 910–917, 2014.
173. Zhang, Z.Y., Song, Y., Zheng, S.J., Zhen, G.Y., et al., Electro-conversion of carbon dioxide (CO2) to low-carbon methane by bioelectromethanogenesis process in microbial electrolysis cells: The current status and future perspective. Bioresour. Technol., 279, 339–349, 2019.
174. Nie, H.R., Zhang, T., Cui, M.M., Lu, H.Y., et al., Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. Phys. Chem. Chem. Phys., 15, 14290–14294, 2013.
175. Marshall, C.W., Ross, D.E., Fichot, E.B., Norman, R.S., May, H.D., Long-term Operation of Microbial Electrosynthesis Systems Improves Acetate Production by Autotrophic Microbiomes. Environ. Sci. Technol., 47, 6023–6029, 2013.
176. Pellitero, M.A., Guimera, A., Kitsara, M., Villa, R., et al., Quantitative self-powered electrochromic biosensors. Chem. Sci., 8, 1995–2002, 2017.
177. Monteiro, T., Almeida, M.G., Electrochemical Enzyme Biosensors Revisited: Old Solutions for New Problems. Critical Rev. Anal. Chem., 49, 44–66, 2019. 178. Cheng, S.A., Xing, D.F., Call, D.F., Logan, B.E., Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis. Environ. Sci. Technol., 43, 3953–3958, 2009.
179. Srikanth, S., Maesen, M., Dominguez-Benetton, X., Vanbroekhoven, K., Pant, D., Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES). Bioresour. Technol., 165, 350–354, 2014.
180. Rosenbaum, M., Aulenta, F., Villano, M., Angenent, L.T., Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved? Bioresour. Technol., 102, 324–333, 2011.
181.