Biofuel Cells. Группа авторов

Читать онлайн.
Название Biofuel Cells
Автор произведения Группа авторов
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119725053



Скачать книгу

2010.

      70. Cercado, B., Byrne, N., Bertrand, M., Pocaznoi, D., et al., Garden compost inoculum leads to microbial bioanodes with potential-independent characteristics. Bioresour. Technol., 134, 276–284, 2013.

      71. Shi, M.M., Jiang, Y.G., Shi, L., Electromicrobiology and biotechnological applications of the exoelectrogens Geobacter and Shewanella spp. Sci. China-Technological Sci., 62, 1670–1678, 2019.

      72. Thirumurthy, M.A., Jones, A.K., Geobacter cytochrome OmcZs binds riboflavin: Implications for extracellular electron transfer. Nanotechnol., 31, 2020.

      73. Lovley, D.R., Walker, D.J.F., Geobacter Protein Nanowires. Front. Microbiol., 10, 2019.

      74. Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., et al., Shewanella Secretes flavins that mediate extracellular electron transfer. PNAS USA, 105, 3968–3973, 2008.

      76. Engel, C., Schattenberg, F., Dohnt, K., Schroder, U., et al., Long-Term Behavior of Defined Mixed Cultures of Geobacter sulfurreducens and Shewanella oneidensis in Bioelectrochemical Systems. Front. Bioeng. Biotechnol., 7, 2019.

      77. Li, Y.R., Wen, L.L., Zhao, H.P., Zhu, L.Z., Addition of Shewanella oneidensis MR-1 to the Dehalococcoides-containing culture enhances the trichloroethene dechlorination. Environ. Int., 133, 2019.

      78. Semenec, L., Laloo, A.E., Schulz, B.L., Vergara, I.A., et al., Deciphering the electric code of Geobacter sulfurreducens in cocultures with Pseudomonas aeruginosa via SWATH-MS proteomics. Bioelectrochem., 119, 150–160, 2018.

      79. Blanchet, E., Duquenne, F., Rafrafi, Y., Etcheverry, L., et al., Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction. Energy & Environ. Sci., 8, 3731–3744, 2015.

      80. Jafary, T., Daud, W.R.W., Ghasemi, M., Kim, B.H., et al., Biocathode in microbial electrolysis cell; present status and future prospects. Renewable Sustainable Energy Rev., 47, 23–33, 2015.

      81. Kierek-Pearscon, K., Karatan, E., Biofilm development in bacteria. Adv. Appl. Microbiol., Vol 57, 57, 79–111, 2005.

      82. Uria, N., Ferrera, I., Mas, J., Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms. BMC Microbiol., 17, 2017.

      83. Cardena, R., Moreno-Andrade, I., Buitron, G., Improvement of the bioelectrochemical hydrogen production from food waste fermentation effluent using a novel start-up strategy. J. Chem. Technol. Biotechnol., 93, 878–886, 2018.

      84. Cercado, B., Chazaro-Ruiz, L.F., Ruiz, V., Lopez-Prieto, I.D., et al., Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance. Biosens. Bioelectron., 50, 373–381, 2013.

      85. Zhao, C.-e., Gai, P., Song, R., Chen, Y., et al., Nanostructured material-based biofuel cells: recent advances and future prospects. Chem. Soc. Rev., 46, 1545–1564, 2017.

      86. Holzinger, M., Le Goff, A., Cosnier, S., Carbon nanotube/enzyme biofuel cells. Electrochim. Acta, 82, 179–190, 2012.

      87. Mano, N., de Poulpiquet, A., O2 Reduction in Enzymatic Biofuel Cells. Chem. Rev., 118, 2392–2468, 2018.

      88. Jiang, X., Hu, J., Lieber, A.M., Jackan, C.S., et al., Nanoparticle Facilitated Extracellular Electron Transfer in Microbial Fuel Cells. Nano Lett., 14, 6737–6742, 2014.

      89. Moehlenbrock, M.J., Minteer, S.D., Extended lifetime biofuel cells. Chem. Soc. Rev., 37, 1188–1196, 2008.

      90. Desmet, C., Marquette, C.A., Blum, L.J., Doumèche, B., Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells. Biosens. Bioelectron., 76, 145–163, 2016.

      92. Karimi, A., Othman, A., Uzunoglu, A., Stanciu, L., Andreescu, S., Graphene based enzymatic bioelectrodes and biofuel cells. Nanoscale, 7, 6909–6923, 2015.

      93. Le Goff, A., Holzinger, M., Cosnier, S., Recent progress in oxygen-reducing laccase biocathodes for enzymatic biofuel cells. Cell. Mol. Life Sci., 72, 941–952, 2015.

      94. Rasmussen, M., Abdellaoui, S., Minteer, S.D., Enzymatic biofuel cells: 30 years of critical advancements. Biosens. Bioelectron., 76, 91–102, 2016.

      95. Willner, I., Yan, Y.M., Willner, B., Tel-Vered, R., Integrated Enzyme-Based Biofuel Cells—A Review. Fuel Cells, 9, 7–24, 2009.

      96. Holade, Y., Tingry, S., Servat, K., Napporn, T.W., et al., Nanostructured Inorganic Materials at Work in Electrochemical Sensing and Biofuel Cells. Catalyst., 7, 2017.

      97. Qiu, H.-J., Guan, Y., Luo, P., Wang, Y., Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells. Biosens. Bioelectron., 89, 85–95, 2017.

      98. Babadi, A.A., Bagheri, S., Hamid, S., Bee A., Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement. Biosens. Bioelectron., 79, 850–860, 2016.

      99. Gross, A.J., Holzinger, M., Cosnier, S., Buckypaper bioelectrodes: Emerging materials for implantable and wearable biofuel cells. Energy & Environ. Sci., 11, 1670–1687, 2018.

      100. Walgama, C., Pathiranage, A., Akinwale, M., Montealegre, R., et al., Buckypaper–Bilirubin Oxidase Biointerface for Electrocatalytic Applications: Buckypaper Thickness. ACS Appl. Biomater., 2, 2229–2236, 2019.

      101. Gross, A.J., Chen, X., Giroud, F., Abreu, C., et al., A High Power Buckypaper Biofuel Cell: Exploiting 1,10-Phenanthroline-5,6-dione with FAD-Dependent Dehydrogenase for Catalytically-Powerful Glucose Oxidation. ACS Catal., 7, 4408–4416, 2017.

      102. Chen, X., Yin, L., Lv, J., Gross, A.J., et al., Stretchable and Flexible Buckypaper-Based Lactate Biofuel Cell for Wearable Electronics. Adv. Funct. Mater., 29, 1905785, 2019.

      103. Güven, G., Şahin, S., Güven, A., Yu, E., Power Harvesting from Human Serum in Buckypaper-Based Enzymatic Biofuel Cell. Front. in Energy Res., 4, 2016.

      104. Bollella, P., Lee, I., Blaauw, D., Katz, E., A Microelectronic Sensor Device Powered by a Small Implantable Biofuel Cell. ChemPhysChem, 21, 120–128, 2020.

      105. Torrinha, Á., Montenegro, M., Araujo, A., Conjugation of glucose oxidase and bilirubin oxidase bioelectrodes as biofuel cell in a finger-powered microfluidic platform. Electrochim. Acta, 318, 2019.

      107. Escalona-Villalpando, R.A., Martínez-Maciel, A.C., Espinosa-Ángeles, J.C., Ortiz-Ortega, E., et al., Evaluation of hybrid and enzymatic nanofluidic fuel cells using 3D carbon structures. Int. J. Hydrogen Energy, 43, 11847–11852, 2018.

      108. Escalona-Villalpando, R.A., Hasan, K., Milton, R.D., Moreno-Zuria, A., et al., Performance comparison of different configurations of Glucose/O2 microfluidic biofuel cell stack. J. Power Sources, 414, 150–157, 2019.

      109. Koushanpour,