Mantle Convection and Surface Expressions. Группа авторов

Читать онлайн.
Название Mantle Convection and Surface Expressions
Автор произведения Группа авторов
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119528593



Скачать книгу

parameters when fit to experimental data.

      Figures 3.5d–f show the predicted fractions ϕ of d electrons that occupy each of the considered multi‐electron states for Fe2+ in ferropericlase and Fe3+ in bridgmanite and in the CF phase along different adiabatic compression paths. The change in electronic ground states from 5T2 (high spin) to 1A1 (low spin) for Fe2+ and from 6A1 (high spin) to 2T2 (low spin) for Fe3+ is gradual and broadens with increasing temperatures as suggested earlier (Holmström & Stixrude, 2015; Lin et al., 2007; Sturhahn et al., 2005; Tsuchiya et al., 2006). The crystal‐field model outlined above, however, predicts additional broadening that results from thermal population of the higher energy states 3T1 for Fe2+ and 4T1 for Fe3+. At realistic mantle temperatures, these states are predicted to host up to 25% of d electrons. Population of these states will reduce the effect of spin transitions on mineral densities and elastic properties by diluting the contrasts in properties between pure high‐spin and low‐spin states. The spin transition of Fe2+ in ferropericlase appears to be most susceptible to thermal broadening while spin transitions of Fe3+ in bridgmanite and in the CF phase remain somewhat sharper even at high temperatures.

Graphs depict the (a–c) Reanalysis of elastic moduli of ferropericlase (a), sound wave velocities of bridgmanite (b), and compression data on the CF phase (c) across spin transitions of ferrous (a) and ferric (b,c) iron. Bold black curves show the results of fitting a semi-empirical crystal-field model to the data as explained in the text with the respective crystal-field parameters given in each panel. The values of crystal-field parameters that were free to vary during fitting are marked with an asterisk (*). (g–i) P-wave velocity reductions that result from spin transitions of Fe2+ in ferropericlase (g), Fe3+ in bridgmanite (on B site) (h), and Fe3+ in the CF phase (i) as predicted by the semi-empirical crystal-field model and along adiabatic compression paths starting 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=