Geology: The Science of the Earth's Crust. William J. Miller

Читать онлайн.
Название Geology: The Science of the Earth's Crust
Автор произведения William J. Miller
Жанр Языкознание
Серия
Издательство Языкознание
Год выпуска 0
isbn 4057664634870



Скачать книгу

a region in maturity, during which stage the maximum number (usually a network) of streams in broader V-shaped valleys have developed; divisions of drainage are sharp; the maximum ruggedness of relief has developed; the larger streams only have cut down so near base level that winding (meandering) courses and flood plains are well developed along them; and waterfalls and gorges are rarely present. An almost perfect example of a region in maturity is that around Charleston, West Virginia.

      The old-age stage develops next in the history of the region, during which only a moderate number of streams remain, most of these being at or close to base level so that sweeping curves or meanders (Plate 4) and cut-off meanders or “ox bows” and wide flood plains are characteristic and common. The relief is greatly subdued and the term “rolling country” might be applied to the moderately hilly region. Divisions of drainage are, of course, not at all sharp and the valleys are wide and shallow. Oxbow lakes are common, but gorges and waterfalls are absent. A region typical of old-age topography is that around Caldwell, Kansas.

      Finally, after the remaining low hills have been cut down, the region is in the condition of a broad monotonous plain, practically devoid of relief, over which the sluggish streams pursue very winding, more or less shifting or indefinite courses. For the attainment of this final stage (called a “peneplain”) in the normal cycle of erosion a proportionately very long time is necessary, because the rate of erosion becomes slower and slower as the region is being cut down. Then, too, some change of level between the land and the sea is very likely to take place before the peneplain stage is reached. It is doubtful if any extensive region was ever brought to the condition of a perfect peneplain. Some masses of more resistant or more favorably situated rocks are almost sure to maintain at least moderate heights above the general plain level. Geologically recently upraised, fairly well developed peneplains are southern New England and the great region of eastern Canada. The remarkably even sky lines of these regions mark the peneplain level before the uplift took place, and occasionally masses, called “monadnocks” from Mount Monadnock in southern New Hampshire, rise above the general level. The valleys in such an uplifted peneplain region have been carved out by streams since the uplift began. We have positive evidence that more or less well-developed peneplains of considerable extent existed in various parts of the earth at various times during the many millions of years of known earth history.

      The normal cycle of erosion which, as outlined above, tends toward the peneplain condition may be interrupted at any stage by other processes. An excellent case in point is the upper Mississippi Valley, which had reached the old-age stage, even approximating a peneplain, just before the great Ice Age. Then, during the withdrawal of the vast sheet of ice from the region toward the close of the Ice Age, extensive deposits (moraines, etc.) of glacial débris were left irregularly strewn over the country, giving rise to many low hills, lake basins, and altered drainage lines, in some cases with resultant gorge development. Some distinct features of a youthful topography are, therefore, plastered over what was otherwise a region well along in old age. The general district around the Dells of Wisconsin River well illustrates this principle.

      Changes in level between land and sea which take place during the erosion of a region may also disturb the normal cycle of erosion. For example, a region in old age may be considerably upraised so that the streams have their velocities notably increased. Such a region is said to be “rejuvenated” and the streams, which are revived in activity, begin to cut youthful valleys in the bottom of the old ones and, after a time, the general surface of the region is subjected to vigorous erosion and a new cycle of erosion will be carried out unless interfered with in some way, as by relative change of level between the land and the sea. In this connection the history of the topography in the general vicinity of Harrisburg, Pennsylvania, may be of interest by way of illustration of the principle just described. The long, narrow, parallel Appalachian Mountain ridges there rise to about the same level, causing a remarkably even sky line as viewed from one of the summits. This even sky line marks approximately the surface of what was a peneplain late in the Mesozoic era. Early in the succeeding Cenozoic era, the broad peneplain was notably upraised to nearly the present altitudes of the ridge tops. The revived Susquehanna River left the old course which it had on the peneplain surface, and began to carve out its present valley, while tributaries (subsequent streams) to it developed along belts of weaker rock and thus they formed the present parallel valleys separated by belts of more resistant rocks which stand out as ridges. In this way, the mature stage of topography was reached. Very recently, geologically, the region has been rejuvenated enough to cause the larger streams to appreciably sink their channels below the general valley floors. The reader will find a general discussion of movements of the earth’s crust in a succeeding chapter.

      Fig. 1.—The submerged Hudson River channel is clearly shown by the contour lines on the sea floor. Figures indicate depth of water in fathoms. Geologically recent sinking of the land has caused the “drowning” of the river valley. (Coast and Geodetic Survey).

      If, for example, a region along the seaboard has reached the mature stage of erosion, and the land notably subsides relative to sea level, the tidewater will enter the lower valleys to form estuaries and the valleys are said to be “drowned.” The large streams, or at least their lower courses, are thus obliterated and also the general erosion of the region is distinctly diminished. The recently sunken coast of Maine well illustrates the idea of “drowned valleys.” The drowned valley of the lower Hudson River is another fine example.

      Fig. 2.—Sketch maps showing how the Shenandoah River captured the upper waters of Beaverdam Creek in Virginia. The abandoned valley of the creek across Blue Ridge is now called a “wind gap.” (After B. Willis.)

      What is termed stream “piracy” is of special interest in connection with stream work. By this is meant the stealing of one stream or part of a stream by another. We shall here explain only one of the various ways by which stream capture may be effected. One of two fairly active streams, flowing roughly parallel to each other, is more favorably situated and has cut its channel deeper. Its tributaries are, therefore, more favorable to extension of headwaters and, in time, one of its tributaries eats back far enough to tap a branch of the less favorably situated stream so that the waters of this branch are diverted into the more favorably situated stream. The Shenandoah River of Virginia has been such a pirate. This river developed as a tributary of the Potomac. By headward extension toward the south, the Shenandoah finally tapped and diverted the upper waters of the smaller, less favorably situated Beaverdam Creek. The notch or so-called “wind gap” through which the upper waters of Beaverdam Creek formerly flowed across the Blue Ridge is still plainly visible. Such abandoned water gaps, known as “wind gaps,” are common in the central Appalachian Mountain region.

      A remarkable type of river is one which has been able to maintain its course through a barrier, even a mountain range, which has been built across it. Thus, the Columbia River, after flowing many miles across the great lava plateau, has maintained its course right across the growing Cascade Range by cutting a deep canyon while the mountain uplift has been in progress. In a similar manner the Ogden River of Utah has kept its westward course by cutting a deep canyon into the Wasatch Range which has geologically recently, though slowly, risen across its path. In no other way can we possibly explain the fact that such a river, rising on one side of a high mountain range, cuts right across it.

      A feature of minor though considerable popular interest is the development of “potholes” by stream action. Where eddies occur, in rather active streams, rock fragments of varying sizes may be whirled around in such manner as to corrode or grind the bedrock, resulting in the development of cylinder-shaped “potholes.” Such holes vary in diameter up to fifty feet or more in very exceptional cases. In the production of large “potholes” many rock fragments are worn away and new ones supplied to continue the work. Locally, some stream beds are honeycombed with “potholes.”

      Fig.