Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics. Patrick Muldowney

Читать онлайн.
Название Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics
Автор произведения Patrick Muldowney
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119595526



Скачать книгу

alt="upper P left-parenthesis upper Y Subscript t Baseline element-of upper A right-parenthesis equals StartFraction StartAbsoluteValue upper A EndAbsoluteValue Over m EndFraction comma"/>

      where StartAbsoluteValue upper A EndAbsoluteValue is the number of elements in A. Then, for each t, upper Y Subscript t is a left-parenthesis normal upper Omega comma upper P right-parenthesis‐measurable function and thus a random variable. (We may also suppose, if it is convenient for us, that for any t, t prime, the random variables upper Y Subscript t Baseline comma upper Y Subscript t prime Baseline are independent.)

      Now suppose that, for 0 less-than t less-than-or-equal-to tau, upper Z Subscript t is another indeterminate or unpredictable quantity; and that, for given t, the possible values of upper Z Subscript t depend in some deterministic way on the corresponding values of upper Y Subscript t, so

upper Z Subscript t Baseline equals f left-parenthesis upper Y Subscript t Baseline right-parenthesis

      where f is a deterministic function. For instance, the deterministic relation could be upper Z Subscript t Baseline equals upper Y Subscript t Superscript 2, so if the value taken by upper Y Subscript t at time t is y Subscript t, then the value that upper Z Subscript t takes is y Subscript t Superscript 2. Provided f is a “reasonably nice” function (such as left-parenthesis dot right-parenthesis squared), then upper Z Subscript t is measurable with respect to left-parenthesis normal upper Omega comma upper P right-parenthesis, and is itself a random variable.

      This scenario is in broad conformity with I1, I2, I3, I4 above. So it may be possible to consider, in those terms, the stochastic integral of upper Z Subscript t with respect to upper Y Subscript t. Essentially, with normal upper Omega equals StartSet 1 comma ellipsis comma m EndSet, then for each t, for omega equals i element-of normal upper Omega, and for i equals 1 comma ellipsis comma m,

upper Z Subscript t Baseline left-parenthesis omega right-parenthesis equals f left-parenthesis upper Y Subscript t Baseline left-parenthesis omega right-parenthesis right-parenthesis comma or upper Z Subscript t Baseline left-parenthesis i right-parenthesis equals f left-parenthesis upper Y Subscript t Baseline left-parenthesis i right-parenthesis right-parenthesis comma

      the two formulations being equivalent. If the stochastic integral “integral Subscript 0 Superscript tau Baseline upper Z Subscript t Baseline d upper Y Subscript t” is to be formulated in terms of Lebesgue integrals in 0 less-than t less-than-or-equal-to tau (as intimated in I1, I2, I3, I4), then some properties of t‐measurability (0 less-than-or-equal-to t less-than-or-equal-to tau) are suggested. This aspect can also be simplified, as follows.

      Just as normal upper Omega was reduced to a finite number m of possible values, left-bracket 0 comma tau right-bracket can be replaced by a finite number of fixed time values 0 less-than tau 1 less-than tau 2 less-than midline-horizontal-ellipsis less-than tau Subscript n Baseline equals tau if the family of random variables upper Y Subscript t (0 less-than t less-than-or-equal-to tau) is replaced by upper Y Subscript tau Sub Subscript j (1 less-than-or-equal-to j less-than-or-equal-to n); so there are only a finite number n of random variables upper Y Subscript j Baseline equals upper Y Subscript tau Sub Subscript j,

upper Y Subscript t Baseline equals upper Y Subscript tau Sub Subscript j Subscript Baseline equals upper Y Subscript j Baseline for tau Subscript j minus 1 Baseline less-than t less-than-or-equal-to tau Subscript j Baseline comma 1 less-than-or-equal-to j less-than-or-equal-to n semicolon

      and the random variables can be written

upper Z Subscript t Baseline left-parenthesis omega right-parenthesis equals upper Z Subscript t Baseline left-parenthesis i right-parenthesis equals f left-parenthesis upper Y Subscript t Baseline left-parenthesis omega right-parenthesis right-parenthesis equals f left-parenthesis upper Y Subscript t Baseline left-parenthesis i right-parenthesis right-parenthesis equals f left-parenthesis upper Y Subscript j Baseline left-parenthesis i right-parenthesis right-parenthesis