Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics. Patrick Muldowney

Читать онлайн.
Название Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics
Автор произведения Patrick Muldowney
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119595526



Скачать книгу

upper J EndSet comma element-of script upper M period"/>

      How does this translate to a random variable‐valued integrand such as script upper Z left-parenthesis s right-parenthesis squared? Two kinds of measurability arise here, because, in addition to being a mu‐measurable function of s element-of left-bracket 0 comma t right-bracket, script upper Z left-parenthesis s right-parenthesis is a random variable (as is script upper Z left-parenthesis s right-parenthesis squared), and is therefore a P‐measurable function on the sample space normal upper Omega:

StartLayout 1st Row 1st Column left-bracket 0 comma t right-bracket times normal upper Omega 2nd Column right-arrow from bar Overscript script upper Z Endscripts 3rd Column bold upper R comma 2nd Row 1st Column left-parenthesis s comma omega right-parenthesis 2nd Column right-arrow 3rd Column script upper Z left-parenthesis s comma omega right-parenthesis element-of bold upper R period EndLayout

      Likewise script upper Z left-parenthesis s right-parenthesis squared. For integral Subscript 0 Superscript 1 Baseline script upper Z left-parenthesis s right-parenthesis squared d s to be meaningful as a Lebesgue‐type integral, the integrand script upper Z left-parenthesis s right-parenthesis squared must be script upper M‐measurable (or mu‐measurable) in some sense. At least, for purpose of measurability there needs to be some metric in the space of left-parenthesis normal upper Omega comma upper P right-parenthesis‐measurable functions f Subscript s, 0 less-than-or-equal-to s less-than-or-equal-to t, with f Subscript s Baseline left-parenthesis omega right-parenthesis element-of bold upper R, omega element-of normal upper Omega:

StartSet f Subscript s Baseline equals script upper Z left-parenthesis s right-parenthesis squared colon 0 less-than-or-equal-to s less-than-or-equal-to t EndSet period

      For example, the “distance” between f Subscript s 1 and f Subscript s 2 could be

integral Underscript normal upper Omega Endscripts StartAbsoluteValue f Subscript s 1 Baseline left-parenthesis omega right-parenthesis minus f Subscript s 2 Baseline left-parenthesis omega right-parenthesis EndAbsoluteValue d upper P period

      With such a metric at hand, it may then be possible to define integral Subscript 0 Superscript t Baseline f Subscript s Baseline d s, or integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis squared d s, as the limit of the integrals of (integrable) step functions f Subscript s Superscript left-parenthesis p right-parenthesis converging to f Subscript s for 0 less-than-or-equal-to s less-than-or-equal-to t, as p right-arrow infinity.

      Unfortunately, most standard textbooks do not give this point much attention. But for relatively straightforward integrands such as script upper Z left-parenthesis s right-parenthesis squared, it should not be too difficult.

      Continuing the discussion of I1, I2, I3, I4, it appears that the output of this definition of stochastic integral is a random entity script upper Y; perhaps a process which is some collection of random variables left-parenthesis script upper Y left-parenthesis s right-parenthesis right-parenthesis.

      Again comparing this with basic integration of a real number‐valued function f left-parenthesis s right-parenthesis, the integral integral Subscript 0 Superscript t Baseline f left-parenthesis s right-parenthesis d s is some kind of average or weighted aggregate value for StartSet f left-parenthesis s right-parenthesis colon 0 less-than-or-equal-to s less-than-or-equal-to t EndSet. This integral, if it exists, produces a single unique real number (depending on the value of t), denoted by integral Subscript 0 Superscript t Baseline f left-parenthesis s right-parenthesis d s.

      For random variable‐valued integrand f left-parenthesis s right-parenthesis equals script upper Z left-parenthesis s right-parenthesis, suppose (for the purpose of speculation) that the stochastic integral

integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis d script upper X left-parenthesis s right-parenthesis