Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics. Patrick Muldowney

Читать онлайн.
Название Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics
Автор произведения Patrick Muldowney
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119595526



Скачать книгу

href="#fb3_img_img_fe9fd190-acf7-5cec-b2c1-129a969c01e9.png" alt="script upper Y"/> (or script upper S Subscript t) from many jointly varying random variables, such as script upper X left-parenthesis s right-parenthesis, as s varies between the values 0 and t. This is reminiscent of Norbert Wiener's construction in [169], which is in some sense a mathematical replication in one dimension of Brownian motion; even though the latter is essentially an infinite‐dimensional phenomenon with infinitely many variables. Without losing any essential information, a situation involving infinitely many variables is converted to a scenario involving only one variable.3

      The proof of the Itô isometry relation (see I1) indicates that, as a stochastic process, script upper Z left-parenthesis s right-parenthesis must be independent of script upper X left-parenthesis s right-parenthesis. Otherwise the construction I1, I2, I3 would seem to be inadequate as it stands, whenever the process script upper Z left-parenthesis s right-parenthesis is replaced by a process f left-parenthesis script upper X left-parenthesis s right-parenthesis right-parenthesis.

      In I3 the integrand script upper Z left-parenthesis s right-parenthesis does not have step function form; and, on the face of it, integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis d script upper X left-parenthesis s right-parenthesis indicates dependence of script upper Y (or script upper S Subscript t) on random variables script upper Z left-parenthesis s right-parenthesis and script upper X left-parenthesis s right-parenthesis for every s, 0 less-than-or-equal-to s less-than-or-equal-to t. If the integrand were f left-parenthesis script upper X left-parenthesis s right-parenthesis right-parenthesis (which, in general, it is not), with joint random variability for 0 less-than-or-equal-to s less-than-or-equal-to t, and if left-parenthesis script upper X left-parenthesis s right-parenthesis right-parenthesis is Brownian motion, then the joint probability space for the processes left-parenthesis script upper X left-parenthesis s right-parenthesis right-parenthesis and left-parenthesis f left-parenthesis script upper X left-parenthesis s right-parenthesis right-parenthesis right-parenthesis is given by the Wiener probability measure and its associated multi‐dimensional measure space. (The latter are described in Chapter 5 below.)

      Returning to I1, the Itô integral integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis d script upper X left-parenthesis s right-parenthesis of step function script upper Z left-parenthesis s right-parenthesis is defined as

sigma-summation Underscript j equals 1 Overscript n Endscripts script upper Z Subscript j minus 1 Baseline left-parenthesis script upper X left-parenthesis t Subscript j Baseline right-parenthesis minus script upper X left-parenthesis t Subscript j minus 1 Baseline right-parenthesis right-parenthesis

      where the script upper Z Subscript j are random variable values of script upper Z equals left-parenthesis script upper Z left-parenthesis s right-parenthesis right-parenthesis. It is perfectly valid to combine finite numbers of random variables in this way, in order to produce, as outcome, a single random variable (—which may be a joint random variable depending on many underlying random variables).

      This part of the formulation of the integral of a step function in I1 corresponds to the integral of a step function in basic integration, and does not require any passage to a limit of random variables.

integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis d s equals sigma-summation Underscript j equals 1 Overscript n Endscripts left-parenthesis script upper Z Subscript j minus 1 Baseline times left-parenthesis t Subscript j Baseline minus t Subscript j minus 1 Baseline right-parenthesis right-parenthesis equals sigma-summation Underscript j equals 1 Overscript n Endscripts alpha Subscript j minus 1 Baseline left-parenthesis t Subscript j Baseline minus t Subscript j minus 1 Baseline right-parenthesis period

      Formally, at least, this looks like the definition in I1 of integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis d script upper X left-parenthesis s right-parenthesis when script upper Z left-parenthesis s right-parenthesis is a step function. The factor t Subscript j Baseline minus t Subscript j minus 1 equals integral Subscript t Subscript j minus 1 Baseline Superscript t Subscript j Baseline d s for each j. This emerges naturally from the mathematical meaning of the length or distance variable s, and from the