Название | The Story of the Heavens |
---|---|
Автор произведения | Robert S. Ball |
Жанр | Языкознание |
Серия | |
Издательство | Языкознание |
Год выпуска | 0 |
isbn | 4064066121693 |
The actual distance of the sun from the earth is about 92,900,000 miles; but by merely reciting the figures we do not receive a vivid impression of the real magnitude. It would be necessary to count as quickly as possible for three days and three nights before one million was completed; yet this would have to be repeated nearly ninety-three times before we had counted all the miles between the earth and the sun.
Every clear night we see a vast host of stars scattered over the sky. Some are bright, some are faint, some are grouped into remarkable forms. With regard to this multitude of brilliant points we have now to ask an important question. Are they bodies which shine by their own light like the sun, or do they only shine with borrowed light like the moon? The answer is easily stated. Most of those bodies shine by their own light, and they are properly called stars.
Suppose that the sun and the multitude of stars, properly so called, are each and all self-luminous brilliant bodies, what is the great distinction between the sun and the stars? There is, of course, a vast and obvious difference between the unrivalled splendour of the sun and the feeble twinkle of the stars. Yet this distinction does not necessarily indicate that our luminary has an intrinsic splendour superior to that of the stars. The fact is that we are nestled up comparatively close to the sun for the benefit of his warmth and light, while we are separated from even the nearest of the stars by a mighty abyss. If the sun were gradually to retreat from the earth, his light would decrease, so that when he had penetrated the depths of space to a distance comparable with that by which we are separated from the stars, his glory would have utterly departed. No longer would the sun seem to be the majestic orb with which we are familiar. No longer would he be a source of genial heat, or a luminary to dispel the darkness of night. Our great sun would have shrunk to the insignificance of a star, not so bright as many of those which we see every night.
Momentous indeed is the conclusion to which we are now led. That myriad host of stars which studs our sky every night has been elevated into vast importance. Each one of those stars is itself a mighty sun, actually rivalling, and in many cases surpassing, the splendour of our own luminary. We thus open up a majestic conception of the vast dimensions of space, and of the dignity and splendour of the myriad globes by which that space is tenanted.
There is another aspect of the picture not without its utility. We must from henceforth remember that our sun is only a star, and not a particularly important star. If the sun and the earth, and all which it contains, were to vanish, the effect in the universe would merely be that a tiny star had ceased its twinkling. Viewed simply as a star, the sun must retire to a position of insignificance in the mighty fabric of the universe. But it is not as a star that we have to deal with the sun. To us his comparative proximity gives him an importance incalculably transcending that of all the other stars. We imagined ourselves to be withdrawn from the sun to obtain his true perspective in the universe; let us now draw near, and give him that attention which his supreme importance to us merits.
To the unaided eye the sun appears to be a flat circle. If, however, it be examined with the telescope, taking care of course to interpose a piece of dark-coloured glass, or to employ some similar precaution to screen the eye from injury, it will then be perceived that the sun is not a flat surface, but a veritable glowing globe.
The first question which we must attempt to answer enquires whether the glowing matter which forms the globe is a solid mass, or, if not solid, which is it, liquid or gaseous? At the first glance we might think that the sun cannot be fluid, and we might naturally imagine that it was a solid ball of some white-hot substance. But this view is not correct; for we can show that the sun is certainly not a solid body in so far at least as its superficial parts are concerned.
A general view of the sun as shown by a telescope of moderate dimensions may be seen in Fig. 11, which is taken from a photograph obtained by Mr. Rutherford at New York on the 22nd of September, 1870. It is at once seen that the surface of the luminary is by no means of uniform texture or brightness. It may rather be described as granulated or mottled. This appearance is due to the luminous clouds which float suspended in a somewhat less luminous layer of gas. It is needless to say that these solar clouds are very different from the clouds which we know so well in our own atmosphere. Terrestrial clouds are, of course, formed from minute drops of water, while the clouds at the surface of the sun are composed of drops of one or more chemical elements at an exceedingly high temperature.
The granulated appearance of the solar surface is beautifully shown in the remarkable photographs on a large scale which M. Janssen, of Meudon, has succeeded in obtaining during the last twenty years. We are enabled to reproduce one of them in Fig. 12. It will be observed that the interstices between the luminous dots are of a greyish tint, the general effect (as remarked by Professor Young) being much like that of rough drawing paper seen from a little distance. We often notice places over the surface of such a plate where the definition seems to be unsatisfactory. These are not, however, the blemishes that might at first be supposed. They arise neither from casual imperfections of the photographic plate nor from accidents during the development; they plainly owe their origin to some veritable cause in the sun itself, nor shall we find it hard to explain what that cause must be. As we shall have occasion to mention further on, the velocities with which the glowing gases on the sun are animated must be exceedingly great. Even in the hundredth part of a second (which is about the duration of the exposure of this plate) the movements of the solar clouds are sufficiently great to produce the observed indistinctness.
Irregularly dispersed over the solar surface small dark objects called sun-spots are generally visible. These spots vary greatly both as to size and as to number. Sun-spots were first noticed in the beginning of the seventeenth century, shortly after the invention of the telescope. Their general appearance is shown in Fig. 13, in which the dark central nucleus appears in sharp contrast with the lighter margin or penumbra. Fig. 16 shows a small spot developing out of one of the pores or interstices between the granules.
The earliest observers of these spots had remarked that they seem to have a common motion across the sun. In Fig. 14 we give a copy of a remarkable drawing by Father Scheiner, showing the motion of two spots observed by him in March, 1627. The figure indicates the successive positions assumed by the spots on the several days from the 2nd to the 16th March. Those marks which are merely given in outline represent the assumed positions on the 11th and the 13th, on which days it happened that the weather was cloudy, so that no observations could be made. It is invariably found that these objects move in the same direction—namely, from the eastern to the western limb[3] of the sun. They complete the journey across the face of the sun in twelve or thirteen days, after which they remain invisible for about the same length of time until they reappear at the eastern limb. These early observers were quick to discern the true import of their discovery. They deduced from these simple observations the remarkable fact that the sun, like the earth, performs a rotation on its axis, and in the same direction. But there