Название | Курс «Основы выбора и применения материалов для трубопроводной арматуры» |
---|---|
Автор произведения | Станислав Львович Горобченко |
Жанр | Техническая литература |
Серия | |
Издательство | Техническая литература |
Год выпуска | 2019 |
isbn |
Испытания сталей проводятся методами статического растяжения и на динамический изгиб. В приведенных материалах по практике исследования сталей их испытывали в нетермообработанном состоянии и после аустенитизации при 1000–1100оС, выдержки 1 час, охлаждения в воде. Для получения системных результатов, кроме испытаний на статическое растяжение гладких цилиндрических образцов диаметром 6мм и образцов на динамический изгиб размером 10х10х55мм с острым надрезом по Шарпи при температурах 293, 77 и 20К проводятся исследования образцов, вырезанных из литейной пробы после заливки в кокиль, а также после обработки давлением. По результатам заливки определяются литейные свойства.
Анализ структуры проводится металлографическим, магнитным и рентгеноструктурным методом, а состава – микрорентгеноспектральным методом. Характеристики включений определяются металлографическим (по методу П ГОСТ 1778–70) и микрорентгеноспектральным методами.
Распределение легирующих элементов и примесей определяется на растровом электронном микроскопе Р9М-100У. Оценка характера разрушения образцов проводится на растровом электронном микроскопе JSM-U3.
ПРОЧНОСТНЫЕ СВОЙСТВА
Основное влияние на повышение прочности при всех температурах оказывает азот. При комнатной температуре в сталях с азотом значений временного сопротивления более 300 МПа можно достичь независимо от концентраций хрома и марганца. С понижением температуры влияние азота на прочность увеличивается.
Упрочняющее действие азота уменьшается при легировании никелем. При совместном легировании азотом и ванадием резко снижается низкотемпературное упрочнение. Удаление азота из твердого гамма-раствора за счет образования карбонитридов дает меньший упрочняющий эффект, чем при легировании одним азотом.
Наибольшая прочность и рост низкотемпературного упрочнения в сталях без азота соответствует составам с 8 % хрома и 20 % марганца. Их сильное упрочнение обуславливается деформационным фазовым превращением при низких температурах. В этих составах появляется до 15 % Ɛ-мартенсита в изломе при низкотемпературном нагружении. Минимальное значение предела текучести и низкотемпературного упрочнения соответствует области однофазного аустенита с 8 % хрома и 28 % марганца.
Практически все хромомарганцевые аустенитные стали имеют относительное удлинение при 77 и 20К выше минимально допустимых значений (больше 15 %). В связи с этим более важно оценивать влияние химического состава на энергоемкость при испытаниях на растяжение, являющуюся одним