Название | ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА |
---|---|
Автор произведения | Юрий Вениаминович Красков |
Жанр | Техническая литература |
Серия | |
Издательство | Техническая литература |
Год выпуска | 2019 |
isbn | 978-5-5320-9876-3 |
4.3. Доказательство Ферма
Представленное здесь реконструированное доказательство ВТФ содержит неизвестные сегодняшней науке новые открытия,. Однако от этого оно ничуть не становится трудным для понимания. Скорее наоборот, именно эти открытия и позволяют решить эту проблему наиболее просто и доступно. Сам феномен недоказуемой ВТФ вообще не появился бы, если бы Французская Академия наук была создана ещё при жизни П. Ферма. Тогда он стал бы академиком и публиковал свои научные исследования, а среди его теорем во всех учебниках по арифметике была бы и вот такая самая обычная теорема:
Для любого заданного натурального числа n>2 не существует ни одной тройки натуральных чисел a, b, c, удовлетворяющих уравнению
an + bn = cn (1)
Для доказательства этого утверждения, предположим, что числа a, b, c, удовлетворяющие (1), существуют и тогда, исходя из этого, мы можем получить все без исключения решения этого уравнения в общем виде. С этой целью мы задействуем метод ключевой формулы, при котором к исходному уравнению добавляется ещё одно уравнение, чтобы стало возможно получить решение (1) в системе из двух уравнений. В нашем случае ключевая формула имеет вид:
a+ b = c + 2m (2)
где m натуральное число.
Для получения формулы (2) отмечаем, что a≠b, т.к. иначе 2an=cn, что очевидно невозможно. Следовательно, a<b<c и можно констатировать, что (an-1+bn-1)>cn-1, откуда (a+b)>c.
Поскольку в (1) случаи с тремя нечётными a, b, c, а также с одним нечётным и двумя чётными невозможны, то числа a, b, c могут быть либо все чётные, либо два нечётных и одно чётное. Тогда из (a+b)>c следует формула (2), где число 2m чётное54.
Вначале проверим действенность метода для случая n=2, или уравнения Пифагора a2+b2=c2. Здесь действует ключевая формула (2) и можно получить решение системы уравнений (1), (2), если сделать подстановку одного в другое. Чтобы её упростить, возведём в квадрат обе стороны (2), чтобы сделать числа в (1) и (2) соразмерными. Тогда (2) принимает вид:
{a2+b2−c2}+2(c−b)(c−a)=4m2 (3)
Подставляя уравнение Пифагора в (3), получаем:
AiBi=2m2 (4)
где с учетом формулы (2):
Ai=c−b=a−2m; Bi=c−a=b−2m (5)
Теперь раскладываем на простые множители число 2m2, чтобы получить все варианты AiBi. Для простых чисел m всегда есть только три варианта: 1×2m2=2×m2=m×2m. В этом случае A1=1; B1=2m2; A2=2; B2=m2; A3=m; B3=2m. Поскольку из (5) следует a=Ai+2m; b=Bi+2m; а из (2) c=a+b−2m; то в итоге получаем:
a1=2m+1; b1=2m(m+1); c1=2m(m+1)+1
a2=2(m+1); b2
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Примечания
1
Натурализованные
54
Ферма обнаружил формулу (2) после преобразования уравнения Пифагора в алгебраическое квадратное уравнение: a2+b2=c2=(c−δ1)2+(c−δ2)2
где δ1=с−a; δ2=c−b; Отсюда следует:
c2−2(δ1 +δ2)c+(δ12+ δ22)=0
Для целых решений дискриминанта этого квадратного уравнения должна быть квадратом целого числа, т.е. D=2δ1δ2=2(c−a)(c−b)=4m2, где m – натуральное число. Следовательно, если
D=4m2, то c=a+b−2m
Однако алгебраическое решение не даёт понимания сути полученной формулы. Впервые этот способ был опубликован в 2008 г. [22].