Название | Как предсказать курс доллара. Поиск доходной стратегии с языком R |
---|---|
Автор произведения | Владимир Георгиевич Брюков |
Жанр | Ценные бумаги, инвестиции |
Серия | |
Издательство | Ценные бумаги, инвестиции |
Год выпуска | 2018 |
isbn |
Задание 2. Проанализировать влияние фундаментальных факторов на курс евро к рублю
После того, как читатель познакомился с анализом фундаментальных факторов, влияющих на курс американского доллара к рублю, пора применить эти знания на практике. В данном случае читателю нужно будет внести небольшие изменения в код, анализирующий фундаментальные факторы, влияющие на курс доллара США к рублю. В результате он получит код, анализирующий влияние фундаментальных факторов на курс евро к рублю.
С этой целью ниже дается код, с помощью которого проводился анализ фундаментальных факторов, влияющих на курс доллара США к рублю. Здесь и ниже во всех заданиях автор использует в коде символ решетки с тремя восклицательными знаками #!!!, который ставится ниже строки кода. Символ #!!! является для читателя указанием на то, что данная строка с кодом должны быть им во время решения задания изменены. При необходимости после символа #!!! даются иногда и пояснения о необходимости изменить расположенную выше строку кода.
rm(list=ls(all.names=T))
getwd()
setwd('C:/Users/Vladimir/Documents/Cloud Mail.Ru/1 ANALITIKA/000 R/000 Книга прогноз доллара с R')
ls()
library(zoo)
library(fBasics)
library(urca)
Мои.данные<-read.zoo('Данные.csv', sep = ";", header=TRUE, FUN=as.Date)
head(Мои.данные)
tail(Мои.данные)
dim(Мои.данные)
День_торгов.мес<-(Мои.данные[1:5831, 1])
Долл.США_Руб <-Мои.данные[1:5831, 2]
Евро_Руб <-Мои.данные[1:5831, 3]
Евро_Долл.США<-Мои.данные[1:5831, 4]
Нефть<-Мои.данные[1:5831, 14]
Золото<-Мои.данные[1:5831, 15]
options("scipen"=100, "digits"=4)
Уравн1<-lm(Долл.США_Руб~Евро_Долл.США+Евро_Руб+Нефть+Золото)
summary(Уравн1)
#!!! какую зависимую переменную нужно поменять в Уравн1
#!!! какую независимую переменную нужно поменять в Уравн1
#!!! обратите внимание на значимость Pr(>|t|) коэффициентов в Уравн1
Долл.США_Руб.адф <– ur.df(Долл.США_Руб, type = "drift")
summary(Долл.США_Руб.адф)
Евро_Долл.США.адф <– ur.df(Евро_Долл.США, type = "drift")
summary(Евро_Долл.США.адф)
Евро_Руб.адф <– ur.df(Евро_Руб, type = "drift")
summary(Евро_Руб.адф)
Золото.адф <– ur.df(Золото, type = "drift")
summary(Золото.адф)
Нефть.адф <– ur.df(Нефть, type = "drift")
summary(Нефть.адф)
Долл.США_Руб.ост_адф <– ur.df(Уравн1$residuals, type = "none")
#!!! тестируем остатки, полученные по итогам уравнения регрессия
#!!! с какой зависимой переменной решено это уравнение
summary(Долл.США_Руб.ост_адф)
#!!!
tail(Уравн1$residuals, 20)
#!!!
коэф.возврата<– summary(Долл.США_Руб.ост_адф)@testreg$coefficients[1,1]
#!!! коэф.возврата для какой зависимой переменную нужно протестировать
полупериод.средней <-(-log(2)/коэф.возврата)
полупериод.средней
# 92.33 торговых дней полупериод.средней
plot(Уравн1$residuals[1:5831],