Таємниця патера Брауна = The Secret of Father Brown. Гілберт Кіт Честертон

Читать онлайн.



Скачать книгу

сході Франції біля кордону з Німеччиною.

      16

      Жорж-Бенжамен Клемансо (1841–1929) – французький політичний, державний діяч, журналіст і прем’єр-міністр Франції; Поль Дерулед (1846–1914) – французький поет, політичний діяч, войовничий націоналіст і реваншист.

      17

      Беатріче Ченчі (1577–1599) – батьковбивця, донька римського аристократа, котра прославилася вродою та мужньою поведінкою під час розслідування і страти. Борджіа – родина аристократів іспанського походження, котрі були відомими отруйниками.

      18

      Генрі Джеймс (1843–1916) – американський письменник.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAoHBwkHBgoJCAkLCwoMDxkQDw4ODx4WFxIZJCAmJSMgIyIoLTkwKCo2KyIjMkQyNjs9QEBAJjBGS0U+Sjk/QD3/2wBDAQsLCw8NDx0QEB09KSMpPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT3/wgARCAkDBdwDASIAAhEBAxEB/8QAGwABAAMBAQEBAAAAAAAAAAAAAAECAwQFBgf/xAAaAQEBAQEBAQEAAAAAAAAAAAAAAQIDBAUG/9oADAMBAAIQAxAAAAH7IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFI5/ij718h1n0Wn5n9men0fC/dAAA4zr4Pi9D6L3vD9wAAAAAAAArXn+LPutvivsS/H5HyZ+octvz0/SZ5ukAAGRE/HZH3NM/OPYp+Z/cnsIkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfHfY/HHr+14vtHzH0lvLOrr+P+vJfO8B9i+Ng+y+V9/zT19/lOQ+2cHcTT5zM+ot8d7h6nN8zyn3D5HyT9Gz8fiPqJ+W8s+9z8DgPsgPkfrvkj0fb8TvPF9vzPfI5dfij7rOnxB9++OsfWW+I+sOwHzuO+B9QD81/SvzT9LDL5A+wv85wn2SnnnpU+Tk+uz+Z80+9fJ8x9pX5L1D3KfMWPp5+N+iO7H5C59jPx3mH6Nn5nkH1s/M+Qfe5fP8AKfXxwfOn12nzXEfZKfOn0r4b686nhfPH3zh7gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8d9j8cev7Xi+0PB97zj5v7X4r7U4/M7uY5rRJt4Hr8x9NxemPzr7v4f3DwPqvJ+rPl+T7OTx/M9PjPqeXqH5t9L8998bfnv6H+eH6F4H0EEgfJfW/JHNPr+OfZ38H3jn/AD79J/PD7Cno6nzd6XOnu6RIPO+Q++8U7uPyvWPiv0380/Sz5XPg+uOP5f76Dz/l/rPnD7RYfN3+gk8fx/Z8Y+j8f6T508D6fg+kPk31lj5/PW57/B6EH557/wA3+jFvz39D/PD9C8D6DnPifuvgf0IfO/Reeed6fyv1Z8v9r8B9Gex8J9B8+ffgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfHfY/HHr+14vtDzvR80+c+1+J+sPN7PF+mPBmti3P7fyh9uQfB+p5H2R899f8AnX6EXOM87j7OI+qKH5/998H+gE/nn6F+en6FMSAPkvrfkT0vR872z84/RfjfUPofzz9C/PT7/TLU+bvSx9EAAAD80/S/zT9KPgftPm+k+mMjz/n/AKb4U/SVLEqXPI8b2PHPsPm/pPMPK+o/P/vyUcp496SfRIxPz/8ARvgvvSfzz9D/ADw/Q+fog/P/ANB/Pvvy3B3+AeJ9Z5PrHy32Xx/2pzfFfdfCn3wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOL4374fFfWdIn5f6iD4Cn6FQ+S+umx8RP2op8z9VU+cp7tzyfdkfH+d+gcp8r73obnhfL/UcR3eR9L0HD6geX8V+kDyvWiQDi+O+9Hxf2NxxfFfocHg/Mfoo8X2LD4i32oi0SAAR4Pvwfmv1vujm+A/SKHxuv0nWU+b+pH5/wCt9BJ5ftzJ8j5/3ox2kfE8333GfM/Qdux854Xu2NfH+m6Ti9GR5Pxn6QPN9OJPJ8T7DI8jx/qOwr819RB8B9r1Dwvl/wBFHF3RIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIPC48sT7Vy9QAAAAAAAAAAAAAAAAAAAAAAAKHz9/MH2bHYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJKJUAx5k7woqWVsCCVbAABCJFCCSCQACCQCCQACCUSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeZ8h9Pyd+fz9PQ9LrjD67h7vL1cfZ80eP7fzFvVy/R449fH28z5Wvt+rl4v1mPz8v3vxP1PwuX2Ps+J7fLoieLLTo/Of0Tc4eLz77z9Whw6cHH4fr9+f0Hy/1H52v2PqeZ6XLT5X0PkeuPvLz5nPXn/V/Cfd7k8fX8li3+r+R+u1EV+SzfX8vs9zc+Z+i8His+0RPHoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiYPi+zyfofTx94ebtX4D7H5Lty9/5v9A+Lr361wzry/tPE92WPM9Rzvn/DfZ/Genl9R9D8X9ly6R8R2cnTPJ+hfHfZZfFez899Zp6UTTz7+F+k+S+49HPq/Ovvfhl+/jX5PjrzMPa4PVy+7+e+h+X8/TH6/wCf+gV8d9j8JZ6/0njeti/Mz4P23bHoFfN0rHh+5uayZ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiaH579v8L+iejlpE+P5+nm7/NW9nL7f5Tr83F9Dm9/gjXt+fk+h9X5b6flvxvE77dc/P6/Y1TzuT6z4iX2vc5eblr470fM+j9XLzMvs/O5a+W/Q/kPsJfL+Z9rydT6r5Hs9LN5+fP2dPW+L+1/PsvqPZ8v1eW6fnf3XyHbH2ml3Df5x9B6Pkenn6Xgex5Ued9f8h9lp648vUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABS9D4L7/wCF+664nxPa+dxfJ+y8v29SPi/tfibPp46deevl/qPhvpOs9byej5DKv0vh/S9M+kPP1j4D7r4/rz+0x3py3+e/on5z9t6Mej819L8ZzvpfReV6ub4Hh+38t6OfX935Xqcd/CfbfC/oW5H5397+f1991+Hly1v5XHx9+f6M+G+j4dPWp8ny6m3pz018b9x8f9/qWHn6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK2HzH08TZHx32XLZPTE50+c+jiyJlLw/G/oFemfzj6b297nxPX1c9hLhTqIiR8f9VrOpHwn3nz1e5onGvP8AC+sazHJ28svy32Xn+jqc3xv3cHxW/wBdOp4N/b8/N+c9i3sanxPr+/MseD79cXw/eiQJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIkAAESIkgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMfA1PpXyuOs/YPhmn3E+V6vHSHy+ntd3wv3OpaMfio+8j89z6Y/Rp+B+957mHk5vrPhMO2P0J5HHy17PV+b+n1z9sw24dJApn8fvP1Xb8t9RLIzQByp0c3wtO/P7WvykV9zv85blv1+r829Lpn7hzdPDYKrn8hvP0/d8n9XLLl82PcIzTyNNT1Ix8KvpETmmXgWfSInNVr8lvP0Xf8d9hUjGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA+X+0+N9XHp7frnLfyXkfUeD1x9b3Hl68vwH0fF6Ofk/SclNz6PwvrHm6/I49/m9+f0vo2jzdfH+b09j0ctae+474MPW84+Qtyfd+jHyH3HwHv5fSkebr4nyPo+n6uXzv2vynvnvjzdQFLwfH+l4H1/fl3JefrXzfU4NT43Tj+69PL5D7n4H3M36dDzdPH+O9Xt9fL5/wCy+Z9uWPn/AKr5Wv0GtvC82/nPsfjvv+2fG+c9vgufsZPN2+a4OmPTy+rmHm6+Z8V7Onr5eF9d4Xop9OifL2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8X5n3fM9PP7aJjzdPkqcfuenj9DDi83X4/6z5T7XvjyvH9Lx9T7tE+Xr8ffl9j1c/fiefzdPgvtfhez18frdfg+zF+88P2vmuO/K+7+X+n3Pl+H1vN6Z+zw28Dz7+c+/8AmfoeufnOnh6dT6kefqApfkT4P6LxOv18fsNPz/7Ph17vF9r5rLxvvPlfq95+Y8z3fG6T7bLTxPP0+X/QPlvpeufnb899Z9/4T9H/AD6PvPivT8m33Poqzw38tt5+Xp5fcx8bhy3t6fzP3HTPfS/kebp8n958p9X2x4WDHU+yRPn6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfKWr0+jl9EY+fp+f/c/EfoffFPhPuvz+Mu/6f0tPitPY4LPqZPN1+D+q+U+3789vM9Pw+WvB+w+d+s6TO6OGp+O+u+D75+m2+U9Czg+t26sXg+J+z+S6Z5vU+q6s34L3uL1tT1x5+oDyvV8PU8X7T5P63efnPH+y+F3n9D+R+q+Hzfoer5Luri+s17MXi+I+0+O6Zw9P6rql+E9nH0LPZ+c+k4uPT4P6/wCW+/789M9I83X849Xk+u9XGm/X5vn6/H/oPxv2fTHN8N9v8NZl6f1PYvw3o662e/J5+oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHy2fp07c/c8/wBDxuW/C+2+Y+n3nD5H3eavoZOW/Dx6ujpn0Bz18J9x8x9T0xPzf0nm5vz/AK3ga98d/P3e7z1X4H9D+Ar7nbm6uOhC+Px5ez1x6CXHfyXveZ7/AFxcc9gPA9/m1n5H6Dy9euPK97v7c6z+C/Qfgq+235OzjoJfJ856nbn6cTHHp8t7PB7fXOnzf0Hwtnd9h5HsZqJjGvhvYx9jvjv8D6D5XnbfT+R7Eef4XX07z7CY49Pm+7H1euegctBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEJI8f2Irj7SXC2oAiQAhIAhIiQeR65IklCuTqkgLEgAAABEg8j11kSSgcnVJAWsyISiJKCISHz/wBA1M9COXosAWJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABE4G75pj0/Svmh9K+aH0r5ofSvmh9K+aH0r5ofSvmh9K+aL9K+aH0j5sfSPmx9JPzQ+lfND6V80T6V80X6R82PpHzY+kfNj6Sfmh9K+aJ9K+aL9K+aJ9K+aH0r5ov0r5on0r5ov0r5ofSx82PpJ+aH0r5on0r5ov0r5on0r5ov0r5ofSvmh9K+aH0r5ofSvmh9K+ag+mfNE+lfND6WPmy/SPmx9I+bH0j5sfSPmyfSPmy/ST80PpXzUJ9M+aL9K+aH0r5ofSx82PpHzY+kn5ofSvmh9K+aJ9K+aL9K+aH0r5ofSx82PpHzY+lfNE+lfND6V80PpXzQ+lfND6V80PpXzQ+lfND6V817l59KJ1yAAAAAAAAAAAAAAAAAAAAcfZxzXxQ8v6EAAAAAAFe14v0+/Hh43p01jx/U8v6HHbwvT6774fNel5v0GO8+fy+xrj4N8/Zx6o8j6r5ffCvp+X9VL8t6enZcfOep5X1E6fMepb0Lj5nu4fos9aU5PW6eT5hE8fpRpToZ9bkej18HzY5fSdXL6d5drz9+nj87Hr4+ft9HH2a9PH891cnpc/X35U7Ovg+ba9XL6HX4v1fzu/Lzeh5/uZ7X4+L29+f572/E+nz0w86/HZj7Hj/RzpTytNLz870OD6aa+Weh5+e++1fa35/Dn1uGPP7uP2W/M19rgvHxfc8P7hfhvb4Prrn4Ycvc6eaD6KOPDr4MOjg9rHo3zryb8/B6Xm+/n0+R2+l825Z+p5/vzdPIw7rOf2fnvRX0PH6vMjX27eDrHreN62EvN6HL9TcfFe1x/QnyA5+4AAAAAACPs/jPs+vg7pie3ygUAAAAAAAAAAAAAAAAAABx9nHNfFDy/oQUAAAAACPpfm/Z35OX0qeVefL9j8d7E3Xr+e9JPO+h8L6iz5j2Lb65/M/U/Md3Pv6fJ4/qax5X0/wAx6c6c/s/Oeiz5v0vzXpzXN7fzfp2eZ6nl+tN79Xy/p74eZMTy9zq5bs9fs83L18PlScvoPS83pvLffg01yitOhv3LfL63zZd2Fc+j1/Mz5h9H836lndHz3rXl5Pu+F7s6+T7nzvpJ5v03zHtnDz+1xWeb9J4Hprz6cdprH6L5v3rinJ2eKz0+h5Os6duHNJl9j8Z6V506vH6pvi+m+Z9Ffew83Lfk84cfpg16mFKb83P7Xi9s3vy+tXfl8L3/AAPQz39TxcfQvPzvf+d9OdPO9Pq8e5w9HzenHbq83p5j6Dw3s78+HP1ePNdnufO7p73Nw035/Nk4/UBAUAAAACPtPi/s+nz+6Ynv8oFAAAAAAAAAAAAAAAAAAAYbj5d9PGPT8y+mHzL6YfMvph8y+mHzL6YfMvph8y+mHzL6YfMvph8y+mL8y+mHzWv0Bn5nf3x8y+mL8y+mHzL6YfMvph8y+mHzL6YvzL6YfMvpifMvpi/MvpifMvph8y+mHzL6YfMvph8y+mHzL6YvzL6YfMvpifMvph8y+mHzL6YfMvpi/Mvph8y+mJ8y+mL8y+mJ8y+mHzL6YfMvph8y+mHzL6YfMvpi/MvpifMvph8y+mHzL6YfMvph8y+mHzL6YvzL6YnzL6YfMvpi/MvpifMvpi/Mvph8y+mHzE/TE+ZfTD5l9MX5l9MT5l9MPmX0w+ZfTD5l9MPmX0w+ZfTD5l9MPmff6JvOJNcgAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA