Конец зигзага на пути познания? По материалам публикаций журнала Президиума Российской академии наук. С. В. Гальперин

Читать онлайн.



Скачать книгу

то каждая единица в составе пятёрки, неся на себе её энергию смысла, способна ещё и многократно выразить её вовне.

      – Каким же, это, образом, позвольте спросить?

      – Самым что ни на есть обычным степенным рядом: 52, 53, 5 4, 5и т. д. В каждом последовательно осуществляемом акте воспроизводится то же единство.

      – Ну, насколько я понимаю, такая трактовка возведения числа в степень совершенно расходится с общепринятой. Тем не менее, мне это кажется интересным, чем-то напоминая расходящиеся по воде круги от брошенного камня.

      – Ничего удивительного, ведь, по существу, мы действительно имеем дело с простейшим волновым процессом, пока что, правда, лишь в числовом скалярном поле. Но достаточно лишь вспомнить, обратившись к предыдущим нашим с вами беседам, что природа этого процесса выявляется в точке (центре расходящихся/сходящихся направлений), и что сама она, как дискретное начало, выражена числом (единицей), чтобы стало предельно ясно – весь предыдущий анализ смысловой энергии числа вообще был привязан исключительно к точке.

      – Если так, то вы совершенно напрасно теряете время. Я отдаю должное вашей преданности точке, но нельзя же сводить к ней всю математику!

      – У меня такого и в мыслях не было. Тем не менее, в реальности смысловая энергия числа проявляется лишь тогда, когда оно действительно символизирует точку, а не какую-либо иную вещь, связанную с обычным исчислением и с исторически сложившимся в связи с этим математическим аппаратом.

      – Вы что же, собираетесь теперь излагать саму историю математики?

      – Нет, конечно. Но небольшой исторический экскурс нам с вами предпринять всё же придётся. Дело в том, что в окружающем человека мире, лишь только он начал осознавать себя в нём, невозможно было существовать, не сравнивая. Именно число позволяло превращать в конкретные количественные результаты жизненно важные для него абстрактные пары понятий: «много» – «мало», «больше» – «меньше». Поэтому нет ничего необычного в том, что от древнейших времён и до сегодняшнего дня простейшей и важнейшей операцией с числами остаётся сложение. Складывая, суммируя, человек опосредствует свойства аддитивности (прибавления), экстенсивности (расширения), которыми обладает мир вещей. Более того, сложение стало основой других операций с числами, и математические папирусы древних египтян являются прямым свидетельством того, как в процессе повторного сложения сумма складываемых чисел превращается в их произведение. Да и у отмеченного вами возведения натурального числа в степень, если разобраться, все та же основа. Впрочем, этот подход сохранился и в нынешней науке.

      – Что ж, по-вашему, наука имеет дело лишь с натуральными числами?

      – Вовсе нет. Просто ничего, по существу, не изменилось с тех пор, как она стала уделять всё больше внимания уже не самим числам, а взаимосвязям количественных отношений – функциям. Нетрудно, по крайней