Название | Живая математика. Занимательные задачи для любознательных умов |
---|---|
Автор произведения | Яков Перельман |
Жанр | Учебная литература |
Серия | Азбука науки для юных гениев |
Издательство | Учебная литература |
Год выпуска | 0 |
isbn | 978-5-9524-5234-3 |
Троим товарищам вы предлагаете во время вашего отсутствия из комнаты спрятать в карман карандаш, ключ или ножик, кто какую вещь хочет. Вы берётесь отгадать, в чьём кармане какая вещь.
Процедура отгадывания проводится так. Возвратившись в комнату после того, как вещи спрятаны по карманам товарищей, вы начинаете с того, что вручаете им на сохранение орехи из тарелки. Первому даёте один орех, второму – два, третьему – три. Затем снова удаляетесь из комнаты, оставив товарищам следующую инструкцию. Каждый должен взять себе из тарелки ещё орехов, а именно: обладатель карандаша берёт столько орехов, сколько ему было вручено; обладатель ключа берёт вдвое больше того числа орехов, какое ему было вручено; обладатель ножа берёт вчетверо больше того числа орехов, какое ему было вручено.
Прочие орехи остаются на тарелке.
Когда всё это проделано и вам дан сигнал возвратиться, вы, входя в комнату, бросаете взгляд на тарелку и объявляете, у кого в кармане какая вещь.
Фокус тем более озадачивает, что выполняется без участия тайного сообщника, подающего вам незаметные сигналы. В нём нет никакого обмана: он целиком основан на арифметическом расчёте. Вы разыскиваете обладателя каждой вещи единственно лишь по числу оставшихся орехов. Остаётся их на тарелке немного – от 1 до 7, и счесть их можно одним взглядом.
Как же, однако, узнать по остатку орехов, кто взял какую вещь?
Очень просто: каждому случаю распределения вещей между товарищами отвечает иное число остающихся орехов. Мы сейчас в этом убедимся.
Пусть имена ваших товарищей Владимир, Георгий, Константин; обозначим их начальными буквами: В, Г, К. Вещи также обозначим буквами: карандаш – а, ключ – b, нож – с. Как могут три вещи распределиться между тремя обладателями? На 6 ладов:
Других случаев, очевидно, быть не может; наша табличка систематически исчерпывает все комбинации.
Посмотрим теперь, какие остатки отвечают каждому из этих 6 случаев:
Вы видите, что остаток орехов всякий раз получается иной. Поэтому, зная остаток, вы легко устанавливаете, каково распределение вещей между вашими товарищами. Вы снова – в третий раз – удаляетесь из комнаты и заглядываете там в свою записную книжку, где записана сейчас воспроизведённая табличка (собственно, нужны вам только первая и последняя графы); запомнить её наизусть трудно, да и нет надобности. Табличка
скажет вам, в чьём кармане какая вещь. Если, например, на тарелке осталось 5 орехов, то это означает (случаи b, с, а), что
ключ – у Владимира;
нож – у Георгия;
карандаш – у Константина.
Чтобы фокус удался, вы должны твёрдо помнить, сколько орехов вы дали каждому товарищу (раздавайте орехи поэтому всегда по алфавиту, как и было сделано в нашем случае).
Глава вторая
Математика в играх
Домино
16. Цепь из 28 костей
Почему 28 костей домино можно выложить с соблюдением правил игры в одну непрерывную цепь?
17. Начало и конец цепи
Когда 28 костей домино выложены в цепь, на одном