Omphalos: An Attempt to Untie the Geological Knot. Gosse Philip Henry

Читать онлайн.
Название Omphalos: An Attempt to Untie the Geological Knot
Автор произведения Gosse Philip Henry
Жанр Биология
Серия
Издательство Биология
Год выпуска 0
isbn



Скачать книгу

from amongst existing species."26

      Not a single species, or even a single genus of those early strata, is identical with any that exists now. The Coral-polypes, for instance, while allied to ours, are quite distinct from them, though endowed with similar powers and habits, so that we may reason from analogy on the laws of their deposits. The Trilobites were allied to the tiny water-fleas (Entomostraca) of the present day: like the Oniscidæ (wood-lice, buttons, &c.) of our gardens, they had the habit of rolling their plated bodies into a ball. These are found in great numbers, their remains often heaped on one another. The Mollusca of those seas were chiefly of the class Cephalopoda– one of the least populous now-a-days, but then existing in vast number and variety; the Brachiopoda, Conchifera, and Gastropoda, were, however, well represented also.

      Such were the inhabitants of the sea during the Silurian period, in which a series of solid deposits were made, the aggregate, probably, exceeding 50,000 feet in thickness. Each deposit, though not more than a few inches in depth, "is provided with its own written story, its sacred memoranda, assuring us of the regularity and order that prevailed, and of the perfect uniformity of plan."

      Over all these, however, we see laid the strata of the Devonian system, especially the old red sandstone, which in some places attains a thickness of 10,000 feet. It is composed of a coarse agglomeration of broken fragments of the old granitic rocks, rolled and tossed about, apparently by the ever-breaking waves of shingle-beaches, until the hardest stones are worn into rounded pebbles by long and constant attrition.

      An examination of the old red sandstone, as is seen in Herefordshire, will aid us in forming a notion of the time required for its production. It is composed of fragments obtained by the disintegration of more ancient rocks, which, by a long process of rolling together in a breaking sea, or in the bed of a rapid current, have lost all their angles. The pebbles, thus worn, have at length settled, – the heaviest lowest, – and the whole has been consolidated into firm rock. "In many places," says Dr. Pye Smith, "the upper part of this vast formation is of a closer grain, showing that it was produced by the last and finest deposits of clayey and sandy mud, tinged, as the whole is, with oxides and carbonates of iron, usually red, but often of other hues. But, frequently, the lower portions, sometimes dispersed heaps, and, sometimes, the entire formation, consist of vast masses of conglomerate, the pebbles being composed of quartz, granite, or some other of the earliest kinds; and thus showing the previous rocks, from whose destruction they have been composed. Let any person first acquire a conception of the extent of this formation, and of its depth, often many hundreds, and, sometimes, two or three thousand feet; (but such a conception can scarcely be formed without actual inspection;) then let him attempt to follow out the processes which the clearest evidence of our senses shows to have taken place; and let him be reluctant and sceptical to the utmost that he can, he cannot avoid the impression that ages innumerable must have rolled over the world, in the making of this single formation."27

      Here, Fishes are added to the Invertebrate Animals. A sort of Shark with the mouth terminal, instead of beneath the head, was the earliest representative of this class. But closely following on this, were some curious species, enveloped in plate mail, and remarkable for the singularity of their forms, as the Cephalaspis and the Pterichthys.

      This great period passed away, and was succeeded by that of the Carboniferous deposits, indicative of a vast change in the physical character of the earth's surface and atmosphere. This change of character may be briefly summed up as consisting of an immense abundance of lime in the ocean, and of an equally vast charge of carbonic acid in the atmosphere.

      Strata of limestone, 2,500 feet in thickness, were accumulated in the ocean by the labours of Coral-polypes, allied to, but totally distinct from, those which had previously existed in the primary system. On the floor of a shallow sea, which then occupied the middle of what is now England, the coral reefs rose perpetually towards the day, atom by atom, the strata on which they were founded slowly and steadily sinking ever to a lower level, while successive generations of the industrious zoophytes wrought upwards, to maintain their position within reach of the light and warmth. What period of time was requisite for the aggregation of coral structure to the perpendicular thickness of 2,500 feet?

      While this was going on, other Invertebrata were living in the shallow seas, mostly differing from the older species, which had become by this time extinct. Encrinites and Sea-urchins existed; some Foraminifera were astonishingly abundant; the Cephalopoda and the Brachiopoda presented a vast variety of species; and about seventy sorts of Fishes, mostly Sharks, characterised the age.

      On the coral limestone lies a sort of conglomerate, known as the millstone grit; and on this is laid that source of Britain's eminence, the coal. The coal measures of South Wales are estimated at 12,000 feet in thickness. The profusion of vegetable life that must have combined to make the coal in these, has no parallel in this age; no, not in the teeming forests of South America, or the great isles of the Oriental Archipelago. The circumstances which favoured this enormous development of plants, seem never to have been repeated in subsequent ages, since the coal measures which are found in the later strata are thin and inconsiderable, compared with those we are considering.

      M. Adolphe Brogniart suggests that in this period, from some source or other, carbonic acid was generated in vast abundance; or, at least, that it existed in the air, in a far greater proportion than it does now; and it is singularly confirmatory of his view, that terrestrial animals, to which this gas is fatal, have left almost no traces of their existence, during the age of these vast forests – a circumstance otherwise strange and unaccountable.

      "Those parts," says Mr. Ansted, "of the great carboniferous series which generally include the beds of coral, consist of muddy and sandy beds, alternating with one another, and with the coal itself. Some of them would appear to be of fresh-water, and some of marine origin; and they abound, for the most part, with remains of the leaves of Ferns and fern-like trees, together with the crushed trunks of these and other trees, whose substance may have contributed to form the great accumulations of bituminised and other vegetable carbon obtained from these strata.

      "It is not easy to communicate such an idea of beds of coal as shall enable the reader to understand clearly the nature of the circumstances under which they may have been deposited, and the time required for this purpose. The actual total thickness of the different beds in England varies considerably in different districts, but appears to amount, in the Lancashire coal-field, to as much as 150 feet. In North America there is a coal-field of vast extent, in which there appears at least as great a thickness of workable coal as in any part of England; while in Belgium and France the thickness is often much less considerable, although the beds thicken again still further to the east.

      "But this account of the thickness of the beds gives a very imperfect notion of the quantity of vegetable matter required to form them; and, on the other hand, the rate of increase of vegetables, and the quantity annually brought down by some great rivers, both of the eastern and western continents, is beyond all measure greater than is the case in our drier and colder climate. Certain kinds of trees which contributed largely to the formation of the coal, seem to have been almost entirely succulent, and capable of being squeezed into a small compass during partial decomposition. This squeezing process must have been conducted on a grand scale, both during and after the formation of separate beds; and each bed in succession was probably soon covered up by muddy and sandy accumulations, now alternating with the coal in the form of shale and grit-stone. Sometimes, trunks of trees caught in the mud would be retained in a slanting or nearly vertical position, while the sands were accumulating round them; sometimes the whole would be quietly buried, and soon cease to exhibit any external marks of vegetable origin.28

      "To relate the various steps in the formation of a bed of coal, and the gradual superposition of one bed upon another, by which at length the whole group of the coal-measures was completed, would involve an amount of detail little adapted to these pages; and when it is remembered that the woody fibres, after being deposited, had to be completely changed, and the whole character of the vegetable modified, before it could be reduced to the bituminous, brittle, almost crystalline mineral now dug out of the earth for fuel,



<p>26</p>

Ansted's Ancient World, 30.

<p>27</p>

Scripture and Geology, 371. (Ed. 1855.)

<p>28</p>

"It is by no means unlikely that some beds of coal were derived from the mass of vegetable matter present at one time on the surface, and submerged suddenly. It is only necessary to refer to the accounts of vegetation in some of the extremely moist, warm islands in the southern hemisphere, where the ground is occasionally covered with eight or ten feet of decaying vegetable matter at one time, to be satisfied that this is at least possible."