О том, чего мы не можем знать. Путешествие к рубежам знаний. Маркус дю Сотой

Читать онлайн.



Скачать книгу

этим моделям, момент, в который Меркурий может начать свои шалости, наступит еще через несколько миллиардов лет.

      Бесконечная сложность

      Каковы же наши шансы предсказать результаты броска кости, лежащей передо мной? Лаплас сказал бы, что если мне известны размеры кубика, распределение его атомов, скорость, с которой он брошен, и его взаимодействие с окружающей средой, то вычисление точки его остановки теоретически возможно.

      Открытия Пуанкаре и тех, кто пришел после него, обнаружили, что различия в нескольких знаках после запятой могут определить, упадет ли кость шестеркой или двойкой. Хотя возможных исходов броска игральной кости существует всего шесть, начальные данные могут варьироваться в потенциально непрерывном диапазоне значений. Тогда, очевидно, должны существовать точки, в которых чрезвычайно малое изменение переключает результат броска с шестерки на двойку. Но какова природа таких переходов?

      Компьютерные модели могут производить прекрасные визуальные представления, позволяющие составить понятие о чувствительности различных систем к начальным условиям. Рядом с игральной костью из Лас-Вегаса у меня стоит классическая настольная игрушка, в которую я могу играть часами. Она состоит из металлического маятника, который притягивают три магнита, выкрашенные в белый, черный и серый цвет. Анализ динамики этой игрушки дает картинку, которая отражает конечное положение маятника при движении из всех точек квадратного основания игрушки. Покрасим точку белым, если маятник, запущенный из этой точки, в конце концов оказывается притянут к белому магниту. Точно так же покрасим серым или черным точки, из которых маятник попадает на серый или черный магнит. Получится вот такая картинка:

      Как и в случае популяционной динамики, тут есть совершенно предсказуемые области. Если движение маятника начинается вблизи одного из магнитов, к этому магниту маятник и притягивается. Но по мере приближения к краям картинки мы оказываемся на гораздо менее предсказуемой почве. И действительно, такая картинка дает нам пример фрактала.

      На ней есть участки, на которых не существует простого перехода от черного к белому. Если увеличивать изображение, картинка никогда не станет областью, заполненной одним цветом. Сложность рисунка сохраняется на всех масштабах.

      Одномерный пример такой картинки можно соорудить следующим образом. Начертим отрезок единичной длины и для начала закрасим одну его половину черным, а другую – белым. Затем возьмем половинный участок между точками 0,25 и 0,75 и перевернем его. Теперь возьмем половину перевернутого участка, расположенную в его середине, и перевернем ее еще раз. Если повторять эту операцию до бесконечности, предсказанное поведение вокруг точки 0,5 становится чрезвычайно чувствительно к малым изменениям. Не существует такого участка, содержащего точку 0,5, который был бы закрашен одним цветом.

      Существует