Нейросети: создание и оптимизация будущего. Джеймс Девис

Читать онлайн.
Название Нейросети: создание и оптимизация будущего
Автор произведения Джеймс Девис
Жанр
Серия
Издательство
Год выпуска 2025
isbn



Скачать книгу

сетей?

      Цепное правило позволяет выразить влияние каждого веса на выходной результат сети через цепочку промежуточных значений, идущих от выхода сети к её скрытым слоям. Например, если у нас есть функция ошибки, зависящая от выходного значения, и это выходное значение зависит от активации на скрытых слоях, мы можем выразить зависимость ошибки от каждого веса как произведение нескольких частных производных (градиентов) по каждой переменной, включая активации и веса.

      При использовании цепного правила градиенты распространяются от выходного слоя к предыдущим слоям, последовательно корректируя веса каждого из них. Таким образом, градиенты "передаются" от одного слоя к другому до самого входа сети. Этот процесс позволяет рассчитать корректные значения градиентов даже для глубоких сетей, что делает обратное распространение ошибку эффективным для их обучения.

      Проблемы обратного распространения

      Обратное распространение – ключевая процедура обучения нейронных сетей, но она не лишена недостатков. Среди наиболее серьёзных проблем – затухание градиентов и взрыв градиентов.

      1. Затухание градиентов (Vanishing Gradients):

      При распространении ошибки назад через глубокие сети градиенты могут становиться слишком малыми, почти исчезая. Это приводит к тому, что более ранние слои сети практически не обновляются, затрудняя обучение. Затухание градиентов наиболее часто наблюдается в сигмоидных или гиперболических активациях, так как их производные уменьшаются для больших или малых значений аргумента.

      2. Взрыв градиентов (Exploding Gradients):

      На противоположном полюсе находится взрыв градиентов, когда значения производных резко увеличиваются. Это может происходить в глубоких или рекуррентных нейронных сетях, где ошибки распространяются назад многократно, что приводит к числовой нестабильности и невозможности корректного обучения, так как веса получают слишком большие обновления.

      Для предотвращения этих проблем используются несколько методов:

      – Нормализация (например, Batch Normalization):

      Нормализация входов и промежуточных слоев помогает стабилизировать значения и улучшает эффективность обучения. Batch Normalization также снижает зависимость сети от начальных значений весов, ускоряя сходимость.

      – Инициализация весов (например, He и Xavier):

      Инициализация весов с учетом распределения значений помогает предотвратить как затухание, так и взрыв градиентов. Например, метод инициализации Xavier подходит для сигмоидных и гиперболических активаций, а He – для ReLU.

      – Использование регуляризирующих методов (например, Dropout):

      Dropout помогает избежать переобучения, уменьшая шансы на взрыв градиентов за счёт разреживания слоев, что также увеличивает устойчивость сети.

      – Сокращение длины траектории ошибки (например, Gradient Clipping):

      Метод Gradient Clipping ограничивает величину градиентов на каждом шаге, предотвращая их взрыв. Этот метод особенно эффективен в рекуррентных сетях, где ошибка