Название | Нейросети: создание и оптимизация будущего |
---|---|
Автор произведения | Джеймс Девис |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 2025 |
isbn |
– Мы создали простую сеть `SimpleNet` с двумя слоями: первый слой преобразует изображение размером 28x28 в 128 признаков, а второй слой производит выход размером 10 (для 10 классов).
2. Пакетный градиентный спуск:
– В `train_loader` используется параметр `batch_size=len(train_data)`, что означает, что все данные загружаются в одном пакете. Это соответствует пакетному градиентному спуску, где обновление весов происходит только после обработки всех данных.
3. Процесс обучения:
– Для каждой эпохи мы вычисляем градиенты на основе всего набора данных, затем обновляем веса модели. Этот процесс повторяется до завершения обучения.
Преимущества и недостатки пактного градиентного спуска:
Преимущество: Мы используем всю информацию для вычисления градиентов, что делает процесс обучения стабильным.
Недостаток: Для больших наборов данных этот метод может быть очень медленным и требовать много вычислительных ресурсов, так как приходится обрабатывать весь набор данных за один шаг.
2. Стохастический градиентный спуск:
– В этом методе сеть обновляет свои веса после каждого примера из набора данных, а не ждет, пока обработаются все данные.
– Это делает обучение быстрым и может помочь избежать застревания в неудачных локальных решениях, так как каждый отдельный пример может привести к новому направлению. Но такой подход может привести к нестабильности, так как путь к цели будет «дрожать», потому что каждый пример может немного менять направление.
Пример использования стоходастического градиентного спуска (SGD) в PyTorch. В этом методе сеть обновляет свои веса после каждого примера из набора данных, что делает обучение более быстрым, но также может привести к более "дрожащему" пути к минимизации ошибки.
Предположим, у нас есть та же задача классификации изображений из набора данных MNIST.
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
# Определяем простую нейронную сеть
class SimpleNet(nn.Module):
def __init__(self):
super(SimpleNet, self).__init__()
self.fc1 = nn.Linear(28*28, 128) # Первый полносвязный слой
self.fc2 = nn.Linear(128, 10) # Второй слой для классификации (10 классов)
def forward(self, x):
x = x.view(-1, 28*28) # Преобразуем изображение в одномерный вектор
x = torch.relu(self.fc1(x)) # Применяем ReLU активацию
x = self.fc2(x) # Выходной слой
return x
# Загружаем данные MNIST
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_data = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_data, batch_size=1, shuffle=True) # Стохастический градиентный спуск (batch size = 1)
# Создаем модель, функцию потерь и оптимизатор
model = SimpleNet()
criterion = nn.CrossEntropyLoss() # Функция потерь для многоклассовой классификации
optimizer = optim.SGD(model.parameters(), lr=0.01) # Стохастический градиентный спуск
# Обучение
epochs = 1 # Одно обучение (можно увеличить количество эпох)
for epoch in range(epochs):
for data, target in train_loader: # Для каждого примера из набора данных
optimizer.zero_grad() # Обнуляем градиенты перед вычислением новых
output = model(data) # Прямой проход
loss = criterion(output, target) # Вычисляем потери
loss.backward() # Обратное распространение ошибок
optimizer.step() # Обновляем веса
print(f'Эпоха {epoch+1}, Потери: {loss.item()}')
# Пример завершения обучения
print("Обучение