Название | Нейросети: создание и оптимизация будущего |
---|---|
Автор произведения | Джеймс Девис |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 2025 |
isbn |
Преобразование и нормализация данных
Преобразование и нормализация данных – это важные этапы предварительной обработки в процессе обучения моделей машинного обучения, в том числе и нейронных сетей. Эти процедуры направлены на улучшение качества входных данных и, как следствие, на повышение точности и стабильности обучения модели.
Преобразование данных включает в себя различные методы изменения формата, структуры и типа данных для повышения их пригодности для анализа. Это может включать в себя такие действия, как:
– Изменение масштаба: Приведение всех значений признаков к единой шкале (например, от 0 до 1 или с использованием z-преобразования), что помогает избежать ситуаций, когда некоторые признаки оказывают непропорционально большое влияние на обучение из-за своих больших масштабов.
– Кодирование категориальных переменных: Преобразование категориальных признаков в числовые форматы (например, с использованием one-hot кодирования), чтобы модели могли работать с этими данными.
– Обработка пропусков: Замена отсутствующих значений в данных на средние, медианные или наиболее частые значения, а также использование более сложных методов, таких как интерполяция или моделирование.
Нормализация данных предполагает изменение диапазона значений признаков, чтобы они имели определённое распределение. Наиболее распространёнными методами нормализации являются:
– Min-Max нормализация: Приведение значений к диапазону [0, 1].
– Z-нормализация (стандартизация): Приведение данных к нулевому среднему и единичной дисперсии, что делает данные более согласованными и помогает улучшить скорость сходимости во время обучения.
Эти процедуры имеют ключевое значение, так как многие алгоритмы машинного обучения, включая нейронные сети, чувствительны к масштабу и распределению данных.
Разделение данных на тренировочные и тестовые наборы
Разделение данных на тренировочные и тестовые наборы – это критически важный этап в разработке моделей машинного обучения, который помогает избежать переобучения (overfitting) и оценить обобщающую способность модели. Обычно процесс разделения включает следующие этапы:
– Тренировочный набор: Это часть данных, на которой модель будет обучаться. Она используется для обновления параметров модели, позволяя ей учиться на известных входных и выходных данных.
– Тестовый набор: Это часть данных, которая не используется в процессе обучения. Она предназначена для оценки производительности модели на новых, невидимых данных, что позволяет проверить, насколько хорошо