Повышение эффективности производства посредством интеграции статистических методов в функционально-стоимостный анализ. В. Б. Кузнецова

Читать онлайн.



Скачать книгу

предприятий и объединений, торговых, страховых компаний, банков, правительственных учреждений. В условиях экономической модернизации существенно меняются информационные запросы управляющих структур по объему, составу, достоверности и оперативности информации. В связи с этим для руководителей различных уровней возрастает роль прогнозов в принятии обоснованных управленческих решений.

      Стремительное распространение пакетов прикладных программ позволило сделать доступными и наглядными современные методы и подходы статистического прогнозирования. При этом применение эконометрического программного обеспечения позволяет создать для пользователя уникальную среду, в которой статистическая обработка данных становится увлекательным исследованием, позволяющим получать многовариантные решения. Пользователь освобождается от всей черновой работы (проведение трудоемких расчетов, построение таблиц и графиков), на его долю остается исследовательская, творческая работа: постановка задачи, выбор методов прогнозирования, оценка качества полученных моделей, интерпретация результатов. Для этого необходимо иметь определенную подготовку в области прикладной статистики, знать методы и подходы статистического анализа и прогнозирования временных рядов [43]. В исследовании использовались экономико-математические модели, построенные с помощью Microsoft Excel и ППП Statistica:

      1) метод аналитического выравнивания – прогнозирование по тренду позволяет определить основную тенденцию;

      2) метод Census II – позволяет выделять сезонную и случайную компоненту, то есть провести декомпозицию ряда, разложение его на составные части;

      3) метод Exponential smoothing & forecasting (экспоненциальное сглаживание и прогнозирование) – позволяет учитывать результат прогноза, сделанного на предыдущем шаге;

      4) прогнозирование по модели Бокса-Дженкинса – ARIMA – процесс (ARIMA & autocorrelation functions) позволяет привести временной ряд к стационарному виду.

      Одним из наиболее перспективных направлений исследования и прогнозирования одномерных временных рядов считаются адаптивные методы.

      При обработке временных рядов, как правило, наиболее ценной бывает информация последнего периода, так как необходимо знать, как будет развиваться тенденция, существующая в данный момент, а не тенденция, сложившаяся в среднем на всем рассматриваемом периоде. Адаптивные методы позволяют учесть различную информационную ценность уровней временного ряда, степень «устаревания» данных.

      Важнейшее достоинство адаптивных методов – построение самокорректирующихся моделей, способных учитывать результат прогноза, сделанного на предыдущем шаге [43].

      Благодаря отмеченным свойствам адаптивные методы особенно удачно используются при оперативном краткосрочном прогнозировании.

      У истоков адаптивных методов лежит модель экспоненциального сглаживания. Экспоненциальное сглаживание – это пример самообучающейся модели. К ее безусловным