Control Theory Applications for Dynamic Production Systems. Neil A. Duffie

Читать онлайн.
Название Control Theory Applications for Dynamic Production Systems
Автор произведения Neil A. Duffie
Жанр Техническая литература
Серия
Издательство Техническая литература
Год выпуска 0
isbn 9781119862857



Скачать книгу

x2 produces output y1 + y2. The following are examples of linear relationships:

y left-parenthesis t right-parenthesis equals upper K x left-parenthesis t right-parenthesis StartFraction d y left-parenthesis t right-parenthesis Over d t EndFraction equals upper K x left-parenthesis t right-parenthesis y left-parenthesis left-parenthesis k plus 1 right-parenthesis upper T right-parenthesis equals upper K x left-parenthesis k upper T right-parenthesis

      The following are examples of nonlinear relationships:

y left-parenthesis t right-parenthesis equals upper K x left-parenthesis t right-parenthesis v left-parenthesis t right-parenthesis StartFraction d y left-parenthesis t right-parenthesis Over d t EndFraction equals upper K x left-parenthesis t right-parenthesis squared y left-parenthesis left-parenthesis k plus 1 right-parenthesis upper T right-parenthesis equals upper K x left-parenthesis k upper T right-parenthesis left-parenthesis 1 minus x left-parenthesis left-parenthesis k minus 1 right-parenthesis upper T right-parenthesis right-parenthesis Start 3 By 1 Matrix 1st Row upper K x left-parenthesis t right-parenthesis greater-than-or-equal-to y Subscript m a x Baseline colon y left-parenthesis t right-parenthesis equals y Subscript m a x Baseline 2nd Row y Subscript m i n Baseline less-than upper K x left-parenthesis t right-parenthesis less-than y Subscript m a x Baseline colon y left-parenthesis t right-parenthesis equals upper K x left-parenthesis t right-parenthesis 3rd Row upper K x left-parenthesis t right-parenthesis less-than-or-equal-to y Subscript m i n Baseline colon y left-parenthesis t right-parenthesis equals y Subscript m i n Baseline EndMatrix

      2.4.1 Linearization Using Taylor Series Expansion – One Independent Variable

      A nonlinear function f(x) of one variable x can be expanded into an infinite sum of terms of that function’s derivatives evaluated at operating point xo:

      f left-parenthesis x right-parenthesis equals f left-parenthesis x Subscript o Baseline right-parenthesis plus StartFraction 1 Over 1 factorial EndFraction left-parenthesis x minus x Subscript o Baseline right-parenthesis StartFraction d f Over d x EndFraction Math bar pipe bar symblom Subscript x Sub Subscript o Subscript Baseline plus StartFraction 1 Over 2 factorial EndFraction left-parenthesis x minus x Subscript o Baseline right-parenthesis squared StartFraction d squared f Over d x squared EndFraction Math bar pipe bar symblom Subscript x Sub Subscript o Subscript Baseline plus ellipsis (2.1)

      xo is the operating point about which the expansion made. Over some range of (xxo) higher-order terms can be neglected, and the following linear model in the vicinity of the operating point is a sufficiently good approximation of the function:

      where

      Such an approximation is illustrated in Figure 2.14.

      Figure 2.14 Linear approximation of function f(x) at operating point xo.

      A production work system such as that illustrated in Figure 2.15 has constant work in progress (WIP) w hours and variable production capacity r(t) hours/day. The lead time l(t) hours then is approximately

      Figure 2.15 Production work system with variable capacity.

l left-parenthesis t right-parenthesis almost-equals StartFraction w Over r left-parenthesis t right-parenthesis EndFraction

      The relationship between lead time and capacity is nonlinear; however, a linear approximation of this relationship in the vicinity of operating point ro can be obtained using Equations 2.2 and 2.3:

StartFraction d l Over d r EndFraction Math bar pipe bar symblom Subscript r Sub Subscript o Subscript Baseline equals minus StartFraction w Over r Subscript o Superscript 2 Baseline EndFraction l left-parenthesis t right-parenthesis almost-equals StartFraction w Over r Subscript o Baseline EndFraction minus StartFraction w Over r Subscript o Superscript 2 Baseline EndFraction left-parenthesis r left-parenthesis t right-parenthesis minus r Subscript o Baseline right-parenthesis

      Figure 2.16 Percent error in lead time due to deviation of actual capacity from capacity operating point chosen for linear approximation.

e Subscript l Baseline left-parenthesis t right-parenthesis equals 100 times left-parenthesis StartStartFraction StartFraction w Over r left-parenthesis t right-parenthesis EndFraction minus left-parenthesis StartFraction w Over r Subscript o Baseline EndFraction minus StartFraction w Over r Subscript o Superscript 2 Baseline EndFraction left-parenthesis r left-parenthesis t right-parenthesis minus r Subscript o Baseline right-parenthesis right-parenthesis OverOver StartFraction w Over r left-parenthesis t right-parenthesis EndFraction EndEndFraction right-parenthesis

      Clearly, capacity should not deviate significantly from the operating point if this approximation is used in a model. If, for example, lead time is to be regulated by adjusting capacity, capacity might vary significantly