Control Theory Applications for Dynamic Production Systems. Neil A. Duffie

Читать онлайн.
Название Control Theory Applications for Dynamic Production Systems
Автор произведения Neil A. Duffie
Жанр Техническая литература
Серия
Издательство Техническая литература
Год выпуска 0
isbn 9781119862857



Скачать книгу

2.4 Mixture outlet temperature regulation in which a heater is used to raise the temperature of a mixture to a desired temperature.

upper Delta h left-parenthesis t right-parenthesis equals h Subscript o Baseline left-parenthesis t right-parenthesis minus h Subscript i Baseline left-parenthesis t right-parenthesis

      Figure 2.5 Experimental results obtained by applying a constant heater voltage v(t) = 50 V starting at time t = 0 seconds and measuring the outlet temperature ho(t) °C when the inlet temperature is constant hi(t) = 60°C.

      The temperature of the mixture changes relatively rapidly at the beginning of the experiment as shown Figure 2.5, but has reached a final value at the end of the experiment. This behavior can be characterized by the relationship

tau StartFraction d upper Delta h left-parenthesis t right-parenthesis Over d t EndFraction plus upper Delta h left-parenthesis t right-parenthesis equals upper K Subscript h Baseline v left-parenthesis t right-parenthesis

      where time constant τ seconds characterizes how quickly temperature difference Δh(t) °C changes in response to heater voltage v(t) V and constant of proportionality Kh °C/V relates the final temperature difference to the applied heater voltage; Kh can be referred to as the mixture heating parameter.

      The known solution of this differential equation for constant input v(t) = v(0) V and initial condition Δh(t) = 0 is

upper Delta h left-parenthesis t right-parenthesis equals left-parenthesis 1 minus normal e Superscript StartFraction negative t Over tau EndFraction Baseline right-parenthesis v left-parenthesis 0 right-parenthesis upper Delta h left-parenthesis tau right-parenthesis equals left-parenthesis 1 minus normal e Superscript negative 1 Baseline right-parenthesis v left-parenthesis 0 right-parenthesis equals 0.632 v left-parenthesis 0 right-parenthesis

      The estimated time constant τ = 49.8 seconds therefore can be obtained by noting the time in Figure 2.5 when approximately 63% of the final change in temperature is reached.

      The estimate of the value of mixture heating parameter Kh can be obtained from the ratio of the constant final change in temperature in Figure 2.5 to the constant voltage applied to the heater: Kh = 20/50 = 0.4°C/V. The model of mixture heating then is approximately

49.8 StartFraction d upper Delta h left-parenthesis t right-parenthesis Over d t EndFraction plus upper Delta h left-parenthesis t right-parenthesis equals 0.4 v left-parenthesis t right-parenthesis

      One option for the decision rule used in the mixture temperature regulation component is

StartFraction d v left-parenthesis t right-parenthesis Over d t EndFraction equals upper K Subscript c Baseline left-parenthesis h Subscript c Baseline left-parenthesis t right-parenthesis minus h Subscript o Baseline left-parenthesis t right-parenthesis right-parenthesis

      2.2 Discrete-Time Models of Components of Production Systems

      Variables in discrete-time models have a value only at discrete instants in time separated by a fixed time interval T. While many physical variables in production systems are fundamentally continuous, they often are sampled, calculated, or changed periodically. Examples include work in progress (WIP) measured manually or automatically at the beginning of each day, mean lead time calculated at the end of each month, and production capacity adjusted at the beginning of each week. Discrete-time modeling results in difference and algebraic equations that describe input–output relationships and represent the behavior of a production system at times kT where k is an integer.

      Example 2.4 Discrete-Time Model of a Production Work System with Disturbances

r Subscript o Baseline left-parenthesis k upper T right-parenthesis equals r Subscript p Baseline left-parenthesis k upper T right-parenthesis plus r Subscript d Baseline left-parenthesis k upper T right-parenthesis

      and the WIP is

w Subscript w Baseline left-parenthesis left-parenthesis k plus 1 right-parenthesis upper T right-parenthesis equals w Subscript w Baseline left-parenthesis k upper T right-parenthesis minus w Subscript d Baseline left-parenthesis k upper T right-parenthesis plus w Subscript d Baseline left-parenthesis left-parenthesis k plus 1 right-parenthesis upper T right-parenthesis plus upper T left-parenthesis r Subscript i Baseline left-parenthesis k upper T right-parenthesis minus r Subscript p Baseline left-parenthesis k upper T right-parenthesis minus r Subscript d Baseline left-parenthesis 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=