Artificial Intelligence and Quantum Computing for Advanced Wireless Networks. Savo G. Glisic

Читать онлайн.
Название Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
Автор произведения Savo G. Glisic
Жанр Программы
Серия
Издательство Программы
Год выпуска 0
isbn 9781119790310



Скачать книгу

x Superscript l Baseline right-parenthesis right-parenthesis v e c left-parenthesis upper F right-parenthesis right-parenthesis Over partial-differential left-parenthesis v e c left-parenthesis upper F right-parenthesis Superscript upper T Baseline right-parenthesis EndFraction equals upper I circled-times normal phi left-parenthesis x Superscript l Baseline right-parenthesis period"/>

      We have used the fact that ∂XaT/∂a = X or ∂Xa/∂aT = X so long as the matrix multiplications are well defined. This equation leads to

      (3.93)StartFraction partial-differential z Over partial-differential left-parenthesis v e c left-parenthesis upper F right-parenthesis right-parenthesis Superscript upper T Baseline EndFraction equals StartFraction partial-differential z Over partial-differential left-parenthesis v e c left-parenthesis y right-parenthesis Superscript upper T Baseline right-parenthesis EndFraction left-parenthesis upper I circled-times normal phi left-parenthesis x Superscript l Baseline right-parenthesis right-parenthesis period

      Taking the transpose, we get

      (3.94)StartLayout 1st Row StartFraction partial-differential z Over partial-differential v e c left-parenthesis upper F right-parenthesis EndFraction equals left-parenthesis upper I circled-times normal phi left-parenthesis x Superscript l Baseline right-parenthesis right-parenthesis Superscript upper T Baseline StartFraction partial-differential z Over partial-differential v e c left-parenthesis y right-parenthesis EndFraction equals left-parenthesis upper I circled-times normal phi left-parenthesis x Superscript l Baseline right-parenthesis Superscript upper T Baseline right-parenthesis v e c left-parenthesis StartFraction partial-differential z Over partial-differential upper Y EndFraction right-parenthesis 2nd Row equals v e c left-parenthesis normal phi left-parenthesis x Superscript l Baseline right-parenthesis Superscript upper T Baseline StartFraction partial-differential z Over partial-differential upper Y EndFraction upper I right-parenthesis equals v e c left-parenthesis normal phi left-parenthesis x Superscript l Baseline right-parenthesis Superscript upper T Baseline StartFraction partial-differential z Over partial-differential upper Y EndFraction right-parenthesis period EndLayout

      The question: What information is required in order to fully specify this function? It is obvious that the following three types of information are needed (and only those). The answer: For every element of φ(xl), we need to know

      (A) Which region does it belong to, or what is the value of (0 ≤ p< Hl + 1 Wl + 1)?

      (B) Which element is it inside the region (or equivalently inside the convolution kernel); that is, what is the value of q(0 ≤ q< HWDl )? The above two types of information determine a location (p, q) inside φ(xl). The only missing information is (C) What is the value in that position, that is, [φ(xl)]pq?

      Since every element in φ(xl) is a verbatim copy of one element from xl, we can reformulate question (C) into a different but equivalent one:

      (C.1) Where is the value of a given [φ(xl)]pq copied from? Or, what is its original location inside xl, that is, an index u that satisfies 0 ≤ u < Hl Wl Dl? (C.2) The entire xl.

      Then, we can use the “indicator” method to encode the function m(p, q) = (il, jl, dl) into M. That is, for any possible element in M, its row index x determines a(p, q) pair, and its column index y determines a(il, jl, dl) triplet, and M is defined as

      (3.95)upper M left-parenthesis x comma y right-parenthesis equals StartLayout Enlarged left-brace 1st Row 1 if m left-parenthesis p comma q right-parenthesis equals left-parenthesis i Superscript l Baseline comma j Superscript l Baseline comma d Superscript l Baseline right-parenthesis 2nd Row 0 otherwise EndLayout

      The M matrix is very high dimensional. At the same time, it is also very sparse: there is only one nonzero entry in the Hl Wl Dl elements in one row, because m is a function. M, which uses information [A, B, C.1], encodes only the one‐to‐one correspondence between any element in φ(xl) and any element in xl; it does not encode any specific value in xl. Putting together the one‐to‐one correspondence information in M and the value information in xl, we have